Visible to the public Biblio

Filters: Keyword is permanent magnet generators  [Clear All Filters]
2017-12-04
Idayanti, N., Dedi, Nanang, T. K., Sudrajat, Septiani, A., Mulyadi, D., Irasari, P..  2016.  The implementation of hybrid bonded permanent magnet on permanent magnet generator for renewable energy power plants. 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA). :557–560.

{This paper describes application of permanent magnet on permanent magnet generator (PMG) for renewable energy power plants. Permanent magnet used are bonded hybrid magnet that was a mixture of barium ferrite magnetic powders 50 wt % and NdFeB magnetic powders 50 wt % with 15 wt % of adhesive polymer as a binder. Preparation of bonded hybrid magnets by hot press method at a pressure of 2 tons and temperature of 200°C for 15 minutes. The magnetic properties obtained were remanence induction (Br) =1.54 kG, coercivity (Hc) = 1.290 kOe, product energy maximum (BHmax) = 0.28 MGOe, surface remanence induction (Br) = 1200 gauss

Kolzer, J. F., Bazzo, T., Carlson, R..  2016.  Optimal design and performance analysis of a ferrite permanent magnet synchronous generator. 2016 12th IEEE International Conference on Industry Applications (INDUSCON). :1–7.

This paper presents the analysis and the design of a ferrite permanent magnet synchronous generator (FePMSG) with flux concentration. Despite the well-known advantages of rare earth permanent magnet synchronous generators (REPMSG), the high cost of the rare earth permanent magnets represents an important drawback, particularly in competitive markets like the wind power. To reduce the cost of permanent magnet machines it is possible to replace the expensive rare earth materials by ferrite. Once ferrite has low remanent magnetization, flux concentration techniques are used to design a cheaper generator. The designed FePMSG is compared with a reference rare earth (NdFeB) permanent magnet synchronous generator (REPMSG), both with 3 kW, 220 V and 350 rpm. The results, validated with finite element analysis, show that the FePMSG can replace the REPMSG reducing significantly the active material cost.