Visible to the public Biblio

Filters: Keyword is Saturation magnetization  [Clear All Filters]
2021-09-21
Azhari, Budi, Yazid, Edwar, Devi, Merry Indahsari.  2020.  Dynamic Inductance Simulation of a Linear Permanent Magnet Generator Under Different Magnet Configurations. 2020 International Conference on Sustainable Energy Engineering and Application (ICSEEA). :1–8.
Recently, some innovations have been applied to the linear permanent magnet generator (LPMG). They are including the introduction of high-remanence rare-earth magnets and the use of different magnet configurations. However, these actions also affect the flow and distribution of the magnetic flux. Under the load condition, the load current will also generate reverse flux. The flux resultant then affects the coil parameters; the significant one is the coil inductance. Since it is influential to the output voltage and output power profiles, the impact study of the permanent magnet settings under load condition is essential. Hence this paper presents the inductance profile study of the LMPG with different magnet configurations. After presenting the initial designs, several magnet settings including the material and configuration were varied. Finite element magnetic simulation and analytical calculations were then performed to obtain the inductance profile of the LPMG. The results show that the inductance value varies with change in load current and magnet position. The different magnet materials (SmCo 30 and N35) do not significantly affect the inductance. Meanwhile, different magnet configuration (radial, axial, halbach) results in different inductance trends.
2021-08-31
Yang, Jiahui, Yuan, Yao, Wang, Shuaibing, Bao, Lianwei, Wang, Ren.  2020.  No-load Switch-in Transient Process Simulation of 500kV Interface Transformer Used in HVDC Flexible. 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). :1–4.
Interface transformer used in asynchronous networking was a kind of special transformer which's different from normal power transformer. During no-load switch-in, the magnitude of inrush current will be high, and the waveform distortion also be severity. Maybe the protections will be activated, even worse may lead the lockdown of the DC system. In this paper, field-circuit coupled finite element method was used for the study of transient characteristic of no-load switch-in, remanence simulation methods were presented. Quantitative analysis of the effect of closing making angle and core remanence on inrush current peak value, meanwhile, the distribution of magnetic field inside the tank during the transient process. The result indicated that the closing making angle and core remanence have obvious effect on inrush current peak value. The research results of this paper can be used to guide the formulation of no-load switch-in strategy of interface transformer, which was of great significance to ensure the smooth operation of HVDC Flexible system.
2020-11-30
Chen, Z., Bai, B., Chen, D., Chai, W..  2018.  Design of Distribution Devices for Smart Grid Based on Magnetically Tunable Nanocomposite. IEEE Transactions on Power Electronics. 33:2083–2099.
This paper designs three distribution devices for the smart grid, which are, respectively, novel transformer with dc bias restraining ability, energy-saving contactor, and controllable reactor with adjustable intrinsic magnetic state based on the magnetically tunable nanocomposite material core. First, the magnetic performance of this magnetic material was analyzed and the magnetic properties processing method was put forward. One kind of nanocomposite which is close to the semihard magnetic state with low coercivity and high remanence was attained. Nanocomposite with four magnetic properties was processed and prepared using the distribution devices design. Second, in order to adjust the magnetic state better, the magnetization and demagnetization control circuit based on the single-phase supply power of rectification and inverter for the nanocomposite magnetic performance adjustment has been designed, which can mutual transform the material's soft and hard magnetic phases. Finally, based on the nanocomposite and the control circuit, a novel power transformer, an energy-saving contactor, and a magnetically controllable reactor were manufactured for the smart grid. The maintained remanence of the nanocomposite core after the magnetization could neutralize the dc bias magnetic flux in the transformer main core without changing the transformer neutral point connection mode, could pull in the contactor movable core instead of the traditional electromagnetic-type fixed core, and could adjust the reactor core saturation degree instead of the traditional electromagnetic coil. The simulation and experimental results verify the correctness of the design, which provides reliable, intelligent, interactive, and energy-saving power equipment for the smart power grids safe operation.
Peng, Y., Yue, M., Li, H., Li, Y., Li, C., Xu, H., Wu, Q., Xi, W..  2018.  The Effect of Easy Axis Deviations on the Magnetization Reversal of Co Nanowire. IEEE Transactions on Magnetics. 54:1–5.
Macroscopic hysteresis loops and microscopic magnetic moment distributions have been determined by 3-D model for Co nanowire with various easy axis deviations from applied field. It is found that both the coercivity and the remanence decrease monotonously with the increase of easy axis deviation as well as the maximum magnetic product, indicating the large impact of the easy axis orientation on the magnetic performance. Moreover, the calculated angular distributions and the evolution of magnetic moments have been shown to explain the magnetic reversal process. It is demonstrated that the large demagnetization field in the two ends of the nanowire makes the occurrence of reversal domain nucleation easier, hence the magnetic reversal. In addition, the magnetic reversal was illustrated in terms of the analysis of the energy evolution.
Chen, Z., Bai, B., Chen, D., Chai, W..  2018.  Direct-Current and Alternate-Decay-Current Hybrid Integrative Power Supplies Design Applied to DC Bias Treatment. IEEE Transactions on Power Electronics. 33:10251–10264.
This paper proposes a novel kind of direct-current and alternate-decay-current hybrid integrative magnetization and demagnetization power supplies applied to transformer dc bias treatment based on a nanocomposite magnetic material. First, according to the single-phase transformer structure, one dc bias magnetic compensation mechanism was provided. The dc bias flux in the transformer main core could be eliminated directionally by utilizing the material remanence. Second, for the rapid response characteristic of the magnetic material to an external magnetic field, one positive and negative dc magnetization superimposed decaying ac demagnetization hybrid integrative power supplies based on single-phase rectifier circuit and inverter circuit was designed. In order to accurately control the magnetic field strength by which a good de/-magnetization effect could be achieved, this paper adopts the double-loop control technology of the magnetic field strength and magnetizing current for the nanocomposite magnetic state adjustment. Finally, two 10 kVA transformers and the experiment module of the hybrid integrative power supplies were manufactured and built. Experimental results showed that the integrated power supplies have good de/-magnetization effect and practicability, proving the validity and feasibility of the proposed scheme.
2020-02-24
Moritz, Pierre, Mathieu, Fabrice, Bourrier, David, Saya, Daisuke, Blon, Thomas, Hasselbach, Klaus, Kramer, Roman, Nicu, Liviu, Lacroix, Lise-Marie, Viau, Guillaume et al..  2019.  Development Of Micro-Magnets For The Electromagnetic Transduction Of MEMS. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII). :1748–1751.
This paper presents a new class of high-performance permanent micro-magnets based on the controlled assembly of cobalt nanorods for the electromagnetic transduction of MEMS. Micromagnets are fabricated using a low temperature fabrication process that yields a dense material exhibiting high coercive field and remanence to saturation magnetization ratio. The cartography of the magnetic induction produced by the sub-millimeter size magnets was obtained using a scanning Hall effect micro-probe microscope. Silicon microcantilevers placed in the vicinity of these magnets were successfully actuated using the Lorentz force with low currents. The good signal to noise ratio measured at resonance demonstrates the potentiality of these nanostructured micro-magnets.
2019-09-30
Liu, Y., Li, L., Gao, Q., Cao, J., Wang, R., Sun, Z..  2019.  Analytical Model of Torque-Prediction for a Novel Hybrid Rotor Permanent Magnet Machines. IEEE Access. 7:109528–109538.

This paper presents an analytical method for predicting the electromagnetic performance in permanent magnet (PM) machine with the spoke-type rotor (STR) and a proposed hybrid rotor structure (HRS), respectively. The key of this method is to combine magnetic field analysis model (MFAM) with the magnetic equivalent circuit model. The influence of the irregular PM shape is considered by the segmentation calculation. To obtain the boundary condition in the MFAM, respectively, two equivalent methods on the rotor side are proposed. In the STR, the average flux density of the rotor core outer-surface is calculated to solve the Laplace's equation with considering for the rotor core outer-surface eccentric. In the HRS, based on the Thevenin's theorem, the equivalent parameters of PM remanence BreB and thickness hpme are obtained as a given condition, which can be utilized to compute the air-gap flux density by conventional classic magnetic field analysis model of surface-mounted PMs with air-gap region. Finally, the proposed analytical models are verified by the finite element analysis (FEA) with comparisons of the air-gap flux density, flux linkage, back-EMF and electromagnetic torque, respectively. Furthermore, the performance that the machine with the proposed hybrid structure rotor can improve the torque density as explained.

Onufer, J., Ziman, J., Duranka, P., Kravčák, J..  2019.  The Study of Closure Domain Structure Dynamics in Bistable Microwires Using the Technique of Three-Level Field Pulses. IEEE Transactions on Magnetics. 55:1–6.

The process of release of a single domain wall from the closure domain structure at the microwire ends and the process of nucleation of the reversed domain in regions far from the microwire ends were studied using the technique that consists in determining the critical parameters of the rectangular magnetic field pulse (magnitude-Hpc and length-τc) needed for free domain wall production. Since these processes can be influenced by the magnitude of the magnetic field before or after the application of the field pulse (Hi, τ), we propose a modified experiment in which the so-called three-level pulse is used. The three-level pulse starts from the first level, then continues with the second measuring rectangular pulse (Hi, τ), which ends at the third field level. Based on the results obtained in experiments using three-level field pulses, it has been shown that reversed domains are not present in the remanent state in regions far from the microwire ends. Some modification of the theoretical model of a single domain wall trapped in a potential well will be needed for an adequate description of the depinning processes.

2018-05-16
Codescu, M. M., Kappel, W., Chitanu, E., Manta, E..  2017.  Exchange hardened ferrimagnetic nanocomposites. 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE). :444–447.

Having significant role in the storing, delivering and conversion of the energy, the permanent magnets are key elements in the actual technology. In many applications, the gap between ferrites and rare earths (RE) based sintered permanent magnets is nowadays filled by RE bonded magnets, used in more applications, below their magnetic performances. Therewith, the recent trends in the RE market concerning their scarcity, impose EU to consider alternative magnets (without RE) to fill such gap. The paper presents the chemical synthesis of the exchange coupled SrFe12O19/CoFe2O4 nanocomposites, based on nanoferrites. The appropriate annealing leads to the increasing of the main magnetic characteristics, saturation magnetization MS and intrinsic coercivity Hc, in the range of 49 - 53 emu/g, respectively 126.5 - 306 kA/m. The value reached for the ratio between remanent magnetization and saturation magnetization is higher than 0.5, fact that proved that between the two magnetic phases occurred exchange interaction.

Liren, Z., Xin, Y., Yang, P., Li, Z..  2017.  Magnetic performance measurement and mathematical model establishment of main core of magnetic modulator. 2017 13th IEEE International Conference on Electronic Measurement Instruments (ICEMI). :12–16.

In order to investigate the relationship and effect on the performance of magnetic modulator among applied DC current, excitation source, excitation loop current, sensitivity and induced voltage of detecting winding, this paper measured initial permeability, maximum permeability, saturation magnetic induction intensity, remanent magnetic induction intensity, coercivity, saturated magnetic field intensity, magnetization curve, permeability curve and hysteresis loop of main core 1J85 permalloy of magnetic modulator based on ballistic method. On this foundation, employ curve fitting tool of MATLAB; adopt multiple regression method to comprehensively compare and analyze the sum of squares due to error (SSE), coefficient of determination (R-square), degree-of-freedom adjusted coefficient of determination (Adjusted R-square), and root mean squared error (RMSE) of fitting results. Finally, establish B-H curve mathematical model based on the sum of arc-hyperbolic sine function and polynomial.

2017-12-20
Chang, L., Kao, M., Tsai, L., Liang, J., Lee, S..  2017.  Frequency modulation spin waves generator via oscillating vortex core in NiFe disk array. 2017 IEEE International Magnetics Conference (INTERMAG). :1–1.

The study of spin waves (SW) excitation in magnetic devices is one of the most important topics in modern magnetism due to the applications of the information carrier and the signal processing. We experimentally realize a spin-wave generator, capable of frequency modulation, in a magnonic waveguide. The emission of spin waves was produced by the reversal or oscillation of nanoscale magnetic vortex cores in a NiFe disk array. The vortex cores in the disk array were excited by an out of plane radio frequency (rf) magnetic field. The dynamic behaviors of the magnetization of NiFe were studied using a micro-focused Brillouin light scattering spectroscopy (BLS) setup.

2017-12-04
Balluff, M., Naumoski, H., Hameyer, K..  2016.  Sensitivity analysis on tolerance induced torque fluctuation of a synchronous machine. 2016 6th International Electric Drives Production Conference (EDPC). :128–134.

The manufacturing process of electrical machines influences the geometric dimensions and material properties, e.g. the yoke thickness. These influences occur by statistical variation as manufacturing tolerances. The effect of these tolerances and their potential impact on the mechanical torque output is not fully studied up to now. This paper conducts a sensitivity analysis for geometric and material parameters. For the general approach these parameters are varied uniformly in a range of 10 %. Two dimensional finite element analysis is used to simulate the influences at three characteristic operating points. The studied object is an internal permanent magnet machine in the 100 kW range used for hybrid drive applications. The results show a significant dependency on the rotational speed. The general validity is studied by using boundary condition variations and two further machine designs. This procedure offers the comparison of matching qualitative results for small quantitative deviations. For detecting the impact of the manufacturing process realistic tolerance ranges are used. This investigation identifies the airgap and magnet remanence induction as the main parameters for potential torque fluctuation.

Neubauer, A., Fritsch, K. M., Elsässer, A..  2016.  Optimized electromagnetic and manufacturing design for a BLDC-motor substituting rare earth magnets. 2016 6th International Electric Drives Production Conference (EDPC). :207–210.

Substituting neodymium with ferrite based magnets comes with the penalty of significant reduced magnetic field energy. Several possibilities to compensate for the negative effects of a lower remanence and coercivity provided by ferrite magnets are presented and finally combined into the development of a new kind of BLDC-machine design. The new design is compared to a conventional machine on the application example of an electric 800 W/48 V automotive coolant pump.