Visible to the public Biblio

Filters: Keyword is power plants  [Clear All Filters]
2020-10-06
André, Étienne, Lime, Didier, Ramparison, Mathias, Stoelinga, Mariëlle.  2019.  Parametric Analyses of Attack-Fault Trees. 2019 19th International Conference on Application of Concurrency to System Design (ACSD). :33—42.

Risk assessment of cyber-physical systems, such as power plants, connected devices and IT-infrastructures has always been challenging: safety (i.e., absence of unintentional failures) and security (i. e., no disruptions due to attackers) are conditions that must be guaranteed. One of the traditional tools used to help considering these problems is attack trees, a tree-based formalism inspired by fault trees, a well-known formalism used in safety engineering. In this paper we define and implement the translation of attack-fault trees (AFTs) to a new extension of timed automata, called parametric weighted timed automata. This allows us to parametrize constants such as time and discrete costs in an AFT and then, using the model-checker IMITATOR, to compute the set of parameter values such that a successful attack is possible. Using the different sets of parameter values computed, different attack and fault scenarios can be deduced depending on the budget, time or computation power of the attacker, providing helpful data to select the most efficient counter-measure.

Akbarzadeh, Aida, Pandey, Pankaj, Katsikas, Sokratis.  2019.  Cyber-Physical Interdependencies in Power Plant Systems: A Review of Cyber Security Risks. 2019 IEEE Conference on Information and Communication Technology. :1—6.

Realizing the importance of the concept of “smart city” and its impact on the quality of life, many infrastructures, such as power plants, began their digital transformation process by leveraging modern computing and advanced communication technologies. Unfortunately, by increasing the number of connections, power plants become more and more vulnerable and also an attractive target for cyber-physical attacks. The analysis of interdependencies among system components reveals interdependent connections, and facilitates the identification of those among them that are in need of special protection. In this paper, we review the recent literature which utilizes graph-based models and network-based models to study these interdependencies. A comprehensive overview, based on the main features of the systems including communication direction, control parameters, research target, scalability, security and safety, is presented. We also assess the computational complexity associated with the approaches presented in the reviewed papers, and we use this metric to assess the scalability of the approaches.

2020-08-07
Lou, Xin, Tran, Cuong, Yau, David K.Y., Tan, Rui, Ng, Hongwei, Fu, Tom Zhengjia, Winslett, Marianne.  2019.  Learning-Based Time Delay Attack Characterization for Cyber-Physical Systems. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—6.
The cyber-physical systems (CPSes) rely on computing and control techniques to achieve system safety and reliability. However, recent attacks show that these techniques are vulnerable once the cyber-attackers have bypassed air gaps. The attacks may cause service disruptions or even physical damages. This paper designs the built-in attack characterization scheme for one general type of cyber-attacks in CPS, which we call time delay attack, that delays the transmission of the system control commands. We use the recurrent neural networks in deep learning to estimate the delay values from the input trace. Specifically, to deal with the long time-sequence data, we design the deep learning model using stacked bidirectional long short-term memory (LSTM) units. The proposed approach is tested by using the data generated from a power plant control system. The results show that the LSTM-based deep learning approach can work well based on data traces from three sensor measurements, i.e., temperature, pressure, and power generation, in the power plant control system. Moreover, we show that the proposed approach outperforms the base approach based on k-nearest neighbors.
2020-07-16
Hasani, Abbas, Haghjoo, Farhad, Bak, Claus Leth, Faria da Silva, Filipe.  2019.  Performance Evaluation of Some Industrial Loss of Field Protection Schemes Using a Realistic Model in The RTDS. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1—5.

Loss of field (LOF) relay, with ANSI code 40, is one of the most important protection functions for synchronous generators in power plants. Although many LOF protection schemes have been presented in the literature during the last decades, a few numbers of them such as impedance and admittance based schemes are accepted by the industry. This paper explores and compares the performances of some industrial LOF protection schemes through simulation studies and from speed, reliability and security viewpoints. The simulation studies are carried out in the real-time-digital-simulator, where a realistic power generation unit is developed by employing the phase domain model of synchronous generator. Using such a realistic system, various types of LOF events can be simulated in accordance with IEEE Standard C37.102-2006, so that the performance of any method can be evaluated through careful LOF studies.

2017-12-04
Idayanti, N., Dedi, Nanang, T. K., Sudrajat, Septiani, A., Mulyadi, D., Irasari, P..  2016.  The implementation of hybrid bonded permanent magnet on permanent magnet generator for renewable energy power plants. 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA). :557–560.

{This paper describes application of permanent magnet on permanent magnet generator (PMG) for renewable energy power plants. Permanent magnet used are bonded hybrid magnet that was a mixture of barium ferrite magnetic powders 50 wt % and NdFeB magnetic powders 50 wt % with 15 wt % of adhesive polymer as a binder. Preparation of bonded hybrid magnets by hot press method at a pressure of 2 tons and temperature of 200°C for 15 minutes. The magnetic properties obtained were remanence induction (Br) =1.54 kG, coercivity (Hc) = 1.290 kOe, product energy maximum (BHmax) = 0.28 MGOe, surface remanence induction (Br) = 1200 gauss