Biblio
In this paper, based on the Hamiltonian, an alternative interpretation about the iterative adaptive dynamic programming (ADP) approach from the perspective of optimization is developed for discrete time nonlinear dynamic systems. The role of the Hamiltonian in iterative ADP is explained. The resulting Hamiltonian driven ADP is able to evaluate the performance with respect to arbitrary admissible policies, compare two different admissible policies and further improve the given admissible policy. The convergence of the Hamiltonian ADP to the optimal policy is proven. Implementation of the Hamiltonian-driven ADP by neural networks is discussed based on the assumption that each iterative policy and value function can be updated exactly. Finally, a simulation is conducted to verify the effectiveness of the presented Hamiltonian-driven ADP.
Zero dynamics attack is lethal to cyber-physical systems in the sense that it is stealthy and there is no way to detect it. Fortunately, if the given continuous-time physical system is of minimum phase, the effect of the attack is negligible even if it is not detected. However, the situation becomes unfavorable again if one uses digital control by sampling the sensor measurement and using the zero-order-hold for actuation because of the `sampling zeros.' When the continuous-time system has relative degree greater than two and the sampling period is small, the sampled-data system must have unstable zeros (even if the continuous-time system is of minimum phase), so that the cyber-physical system becomes vulnerable to `sampling zero dynamics attack.' In this paper, we begin with its demonstration by a few examples. Then, we present an idea to protect the system by allocating those discrete-time zeros into stable ones. This idea is realized by employing the so-called `generalized hold' which replaces the zero-order-hold.
In this paper, we present a new secure message transmission scheme using hyperchaotic discrete primary and auxiliary chaotic systems. The novelty lies on the use of auxiliary chaotic systems for the encryption purposes. We have used the modified Henon hyperchaotic discrete-time system. The use of the auxiliary system allows generating the same keystream in the transmitter and receiver side and the initial conditions in the auxiliary systems combined with other transmitter parameters suffice the role of the key. The use of auxiliary systems will mean that the information of keystream used in the encryption function will not be present on the transmitted signal available to the intruders, hence the reconstructing of the keystream will not be possible. The encrypted message is added on to the dynamics of the transmitter using inclusion technique and the dynamical left inversion technique is employed to retrieve the unknown message. The simulation results confirm the robustness of the method used and some comments are made about the key space from the cryptographic viewpoint.
Autonomous active exploration requires search algorithms that can effectively balance the need for workspace coverage with energetic costs. We present a strategy for planning optimal search trajectories with respect to the distribution of expected information over a workspace. We formulate an iterative optimal control algorithm for general nonlinear dynamics, where the metric for information gain is the difference between the spatial distribution and the statistical representation of the time-averaged trajectory, i.e. ergodicity. Previous work has designed a continuous-time trajectory optimization algorithm. In this paper, we derive two discrete-time iterative trajectory optimization approaches, one based on standard first-order discretization and the other using symplectic integration. The discrete-time methods based on first-order discretization techniques are both faster than the continuous-time method in the studied examples. Moreover, we show that even for a simple system, the choice of discretization has a dramatic impact on the resulting control and state trajectories. While the standard discretization method turns unstable, the symplectic method, which is structure-preserving, achieves lower values for the objective.
We consider the problem of robust on-line optimization of a class of continuous-time nonlinear systems by using a discrete-time controller/optimizer, interconnected with the plant in a sampled-data structure. In contrast to classic approaches where the controller is updated after a fixed sufficiently long waiting time has passed, we design an event-based mechanism that triggers the control action only when the rate of change of the output of the plant is sufficiently small. By using this event-based update rule, a significant improvement in the convergence rate of the closed-loop dynamics is achieved. Since the closed-loop system combines discrete-time and continuous-time dynamics, and in order to guarantee robustness and semi-continuous dependence of solutions on parameters and initial conditions, we use the framework of hybrid set-valued dynamical systems to analyze the stability properties of the system. Numerical simulations illustrate the results.
This paper presents one-layer projection neural networks based on projection operators for solving constrained variational inequalities and related optimization problems. Sufficient conditions for global convergence of the proposed neural networks are provided based on Lyapunov stability. Compared with the existing neural networks for variational inequalities and optimization, the proposed neural networks have lower model complexities. In addition, some improved criteria for global convergence are given. Compared with our previous work, a design parameter has been added in the projection neural network models, and it results in some improved performance. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural networks.