Visible to the public Biblio

Filters: Keyword is nanocomposites  [Clear All Filters]
2020-12-15
Eamsa-ard, T., Seesaard, T., Kerdcharoen, T..  2018.  Wearable Sensor of Humanoid Robot-Based Textile Chemical Sensors for Odor Detection and Tracking. 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST). :1—4.

This paper revealed the development and implementation of the wearable sensors based on transient responses of textile chemical sensors for odorant detection system as wearable sensor of humanoid robot. The textile chemical sensors consist of nine polymer/CNTs nano-composite gas sensors which can be divided into three different prototypes of the wearable humanoid robot; (i) human axillary odor monitoring, (ii) human foot odor tracking, and (iii) wearable personal gas leakage detection. These prototypes can be integrated into high-performance wearable wellness platform such as smart clothes, smart shoes and wearable pocket toxic-gas detector. While operating mode has been designed to use ZigBee wireless communication technology for data acquisition and monitoring system. Wearable humanoid robot offers several platforms that can be applied to investigate the role of individual scent produced by different parts of the human body such as axillary odor and foot odor, which have potential health effects from abnormal or offensive body odor. Moreover, wearable personal safety and security component in robot is also effective for detecting NH3 leakage in environment. Preliminary results with nine textile chemical sensors for odor biomarker and NH3 detection demonstrates the feasibility of using the wearable humanoid robot to distinguish unpleasant odor released when you're physically active. It also showed an excellent performance to detect a hazardous gas like ammonia (NH3) with sensitivity as low as 5 ppm.

2020-11-30
Song, W., Li, X., Lou, L., Hua, Y., Zhang, Q., Huang, G., Hou, F., Zhang, X..  2018.  High-Temperature Magnetic Properties of Anisotropic SmCo7/Fe(Co) Bulk Nanocomposite Magnets. IEEE Transactions on Magnetics. 54:1–5.
High-temperature magnetic properties of the anisotropic bulk SmCo7/Fe(Co) nanocomposite magnets prepared by multistep deformation have been investigated and compared with the corresponding isotropic nanocomposites. The anisotropic SmCo7/Fe(Co) nanocomposites with a Fe(Co) fraction of 28% exhibit much higher energy products than the corresponding isotropic nanocomposites at both room and high temperatures. These magnets show a small remanence (α = -0.022%/K) and a coercivity (β = -0.25%/K) temperature coefficient which can be comparable to those of the conventional SmCo5 and Sm2Co17 high-temperature magnets. The magnetic properties of these nanocomposites at high temperatures are sensitive to the weight fractions of the Fe(Co) phase. This paper demonstrates that the anisotropic bulk SmCo7/Fe(Co) nanocomposites have better high-temperature magnetic properties than the corresponding isotropic ones.
Chen, Z., Bai, B., Chen, D., Chai, W..  2018.  Direct-Current and Alternate-Decay-Current Hybrid Integrative Power Supplies Design Applied to DC Bias Treatment. IEEE Transactions on Power Electronics. 33:10251–10264.
This paper proposes a novel kind of direct-current and alternate-decay-current hybrid integrative magnetization and demagnetization power supplies applied to transformer dc bias treatment based on a nanocomposite magnetic material. First, according to the single-phase transformer structure, one dc bias magnetic compensation mechanism was provided. The dc bias flux in the transformer main core could be eliminated directionally by utilizing the material remanence. Second, for the rapid response characteristic of the magnetic material to an external magnetic field, one positive and negative dc magnetization superimposed decaying ac demagnetization hybrid integrative power supplies based on single-phase rectifier circuit and inverter circuit was designed. In order to accurately control the magnetic field strength by which a good de/-magnetization effect could be achieved, this paper adopts the double-loop control technology of the magnetic field strength and magnetizing current for the nanocomposite magnetic state adjustment. Finally, two 10 kVA transformers and the experiment module of the hybrid integrative power supplies were manufactured and built. Experimental results showed that the integrated power supplies have good de/-magnetization effect and practicability, proving the validity and feasibility of the proposed scheme.
2018-05-16
Codescu, M. M., Kappel, W., Chitanu, E., Manta, E..  2017.  Exchange hardened ferrimagnetic nanocomposites. 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE). :444–447.

Having significant role in the storing, delivering and conversion of the energy, the permanent magnets are key elements in the actual technology. In many applications, the gap between ferrites and rare earths (RE) based sintered permanent magnets is nowadays filled by RE bonded magnets, used in more applications, below their magnetic performances. Therewith, the recent trends in the RE market concerning their scarcity, impose EU to consider alternative magnets (without RE) to fill such gap. The paper presents the chemical synthesis of the exchange coupled SrFe12O19/CoFe2O4 nanocomposites, based on nanoferrites. The appropriate annealing leads to the increasing of the main magnetic characteristics, saturation magnetization MS and intrinsic coercivity Hc, in the range of 49 - 53 emu/g, respectively 126.5 - 306 kA/m. The value reached for the ratio between remanent magnetization and saturation magnetization is higher than 0.5, fact that proved that between the two magnetic phases occurred exchange interaction.

2017-12-04
Chen, Zhiwei, Bai, Baodong, Chen, DeZhi, Chai, Wenping.  2016.  Design of distribution devices for smart grid based on nanocomposite magnetic material. 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). :3546–3553.

This paper design three distribution devices for the strong and smart grid, respectively are novel transformer with function of dc bias restraining, energy-saving contactor and controllable reactor with adjustable intrinsic magnetic state based on nanocomposite magnetic material core. The magnetic performance of this material was analyzed and the relationship between the remanence and coercivity was determined. The magnetization and demagnetization circuit for the nanocomposite core has been designed based on three-phase rectification circuit combined with a capacitor charging circuit. The remanence of the nanocomposite core can neutralize the dc bias flux occurred in transformer main core, can pull in the movable core of the contactor instead of the traditional fixed core and adjust the saturation degree of the reactor core. The electromagnetic design of the three distribution devices was conducted and the simulation, experiment results verify correctness of the design which provides intelligent and energy-saving power equipment for the smart power grids safe operation.