Visible to the public Biblio

Filters: Keyword is sufficient conditions  [Clear All Filters]
2023-07-21
Cai, Chuanjie, Zhang, Yijun, Chen, Qian.  2022.  Adaptive control of bilateral teleoperation systems with false data injection attacks and attacks detection. 2022 41st Chinese Control Conference (CCC). :4407—4412.
This paper studies adaptive control of bilateral teleoperation systems with false data injection attacks. The model of bilateral teleoperation system with false data injection attacks is presented. An off-line identification approach based on the least squares is used to detect whether false data injection attacks occur or not in the communication channel. Two Bernoulli distributed variables are introduced to describe the packet dropouts and false data injection attacks in the network. An adaptive controller is proposed to deal stability of the system with false data injection attacks. Some sufficient conditions are proposed to ensure the globally asymptotical stability of the system under false data injection attacks by using Lyapunov functional methods. A bilateral teleoperation system with two degrees of freedom is used to show the effectiveness of gained results.
2023-05-12
Bouvier, Jean-Baptiste, Ornik, Melkior.  2022.  Quantitative Resilience of Linear Systems. 2022 European Control Conference (ECC). :485–490.
Actuator malfunctions may have disastrous con-sequences for systems not designed to mitigate them. We focus on the loss of control authority over actuators, where some actuators are uncontrolled but remain fully capable. To counter-act the undesirable outputs of these malfunctioning actuators, we use real-time measurements and redundant actuators. In this setting, a system that can still reach its target is deemed resilient. To quantify the resilience of a system, we compare the shortest time for the undamaged system to reach the target with the worst-case shortest time for the malfunctioning system to reach the same target, i.e., when the malfunction makes that time the longest. Contrary to prior work on driftless linear systems, the absence of analytical expression for time-optimal controls of general linear systems prevents an exact calculation of quantitative resilience. Instead, relying on Lyapunov theory we derive analytical bounds on the nominal and malfunctioning reach times in order to bound quantitative resilience. We illustrate our work on a temperature control system.
2022-08-26
Zuo, Zhiqiang, Tian, Ran, Wang, Yijing.  2021.  Bipartite Consensus for Multi-Agent Systems with Differential Privacy Constraint. 2021 40th Chinese Control Conference (CCC). :5062—5067.
This paper studies the differential privacy-preserving problem of discrete-time multi-agent systems (MASs) with antagonistic information, where the connected signed graph is structurally balanced. First, we introduce the bipartite consensus definitions in the sense of mean square and almost sure, respectively. Second, some criteria for mean square and almost sure bipartite consensus are derived, where the eventualy value is related to the gauge matrix and agents’ initial states. Third, we design the ε-differential privacy algorithm and characterize the tradeoff between differential privacy and system performance. Finally, simulations validate the effectiveness of the proposed algorithm.
2022-07-01
Rangi, Anshuka, Franceschetti, Massimo.  2021.  Channel Coding Theorems in Non-stochastic Information Theory. 2021 IEEE International Symposium on Information Theory (ISIT). :1790–1795.
Recently, the δ-mutual information between uncertain variables has been introduced as a generalization of Nair's non-stochastic mutual information functional [1], [2]. Within this framework, we introduce four different notions of capacity and present corresponding coding theorems. Our definitions include an analogue of Shannon's capacity in a non-stochastic setting, and a generalization of the zero-error capacity. The associated coding theorems hold for stationary, memoryless, non-stochastic uncertain channels. These results establish the relationship between the δ-mutual information and our operational definitions, providing a step towards the development of a complete non-stochastic information theory.
Rahimi, Farshad.  2021.  Distributed Control for Nonlinear Multi-Agent Systems Subject to Communication Delays and Cyber-Attacks: Applied to One-Link Manipulators. 2021 9th RSI International Conference on Robotics and Mechatronics (ICRoM). :24–29.
This note addresses the problem of distributed control for a class of nonlinear multi-agent systems over a communication graph. In many real practical systems, owing to communication limits and the vulnerability of communication networks to be overheard and modified by the adversary, consideration of communication delays and cyber-attacks in designing of the controller is important. To consider these challenges, in the presented approach, a distributed controller for a group of one-link flexible joint manipulators is provided which are connected via data delaying communication network in the presence of cyber-attacks. Sufficient conditions are provided to guarantee that the closed-loop system is stable with prescribed disturbance attenuation, and the parameter of the control law can be obtained by solving a set of linear matrix inequities (LMIs). Eventually, simulations results of four single-link manipulators are provided to demonstrate the performance of the introduced method.
2022-05-20
Yao, Bing, Wang, Hongyu, Su, Jing, Zhang, Wanjia.  2021.  Graph-Based Lattices Cryptosystem As New Technique Of Post-Quantum Cryptography. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:9–13.
A new method for judging degree sequence is shown by means of perfect ice-flower systems made by operators - stars (particular complete bipartite graphs), and moreover this method can be used to build up degree sequences and perfect ice-flower systems. Graphic lattice, graph-graphic lattice, caterpillar-graphic lattice and topological coding lattice are defined. We establish some connections between traditional lattices and graphic lattices trying to provide new techniques for Lattice-based cryptosystem and post-quantum cryptography, and trying to enrich the theoretical knowledge of topological coding.
2022-03-02
Li, Fuqiang, Gao, Lisai, Gu, Xiaoqing, Zheng, Baozhou.  2021.  Output-Based Event-Triggered Control of Nonlinear Systems under Deception Attacks. 2021 40th Chinese Control Conference (CCC). :4901–4906.
This paper studies event-triggered output-based security control of nonlinear system under deception attacks obeying a Bernoulli distribution. Firstly, to save system resources of a T-S fuzzy system, an output-based discrete event-triggered mechanism (ETM) is introduced, which excludes Zeno behavior absolutely. Secondly, a closed-loop T-S fuzzy system model is built, which integrates parameters of the nonlinear plant, the ETM, stochastic attacks, fuzzy dynamic output feedback controller and network-induced delays in a unified framework. Thirdly, sufficient conditions for asymptotic stability of the T-S fuzzy sys$łnot$tem are derived, and the design method of a fuzzy output-based security controller is presented. Finally, an example illustrates effectiveness of the proposed method.
2021-06-01
Zhu, Luqi, Wang, Jin, Shi, Lianmin, Zhou, Jingya, Lu, Kejie, Wang, Jianping.  2020.  Secure Coded Matrix Multiplication Against Cooperative Attack in Edge Computing. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :547–556.
In recent years, the computation security of edge computing has been raised as a major concern since the edge devices are often distributed on the edge of the network, less trustworthy than cloud servers and have limited storage/ computation/ communication resources. Recently, coded computing has been proposed to protect the confidentiality of computing data under edge device's independent attack and minimize the total cost (resource consumption) of edge system. In this paper, for the cooperative attack, we design an efficient scheme to ensure the information-theory security (ITS) of user's data and further reduce the total cost of edge system. Specifically, we take matrix multiplication as an example, which is an important module appeared in many application operations. Moreover, we theoretically analyze the necessary and sufficient conditions for the existence of feasible scheme, prove the security and decodeability of the proposed scheme. We also prove the effectiveness of the proposed scheme through considerable simulation experiments. Compared with the existing schemes, the proposed scheme further reduces the total cost of edge system. The experiments also show a trade-off between storage and communication.
2018-12-10
Abuzainab, N., Saad, W..  2018.  Dynamic Connectivity Game for Adversarial Internet of Battlefield Things Systems. IEEE Internet of Things Journal. 5:378–390.

In this paper, the problem of network connectivity is studied for an adversarial Internet of Battlefield Things (IoBT) system in which an attacker aims at disrupting the connectivity of the network by choosing to compromise one of the IoBT nodes at each time epoch. To counter such attacks, an IoBT defender attempts to reestablish the IoBT connectivity by either deploying new IoBT nodes or by changing the roles of existing nodes. This problem is formulated as a dynamic multistage Stackelberg connectivity game that extends classical connectivity games and that explicitly takes into account the characteristics and requirements of the IoBT network. In particular, the defender's payoff captures the IoBT latency as well as the sum of weights of disconnected nodes at each stage of the game. Due to the dependence of the attacker's and defender's actions at each stage of the game on the network state, the feedback Stackelberg solution [feedback Stackelberg equilibrium (FSE)] is used to solve the IoBT connectivity game. Then, sufficient conditions under which the IoBT system will remain connected, when the FSE solution is used, are determined analytically. Numerical results show that the expected number of disconnected sensors, when the FSE solution is used, decreases up to 46% compared to a baseline scenario in which a Stackelberg game with no feedback is used, and up to 43% compared to a baseline equal probability policy.

2015-04-30
Qingshan Liu, Tingwen Huang, Jun Wang.  2014.  One-Layer Continuous-and Discrete-Time Projection Neural Networks for Solving Variational Inequalities and Related Optimization Problems. Neural Networks and Learning Systems, IEEE Transactions on. 25:1308-1318.

This paper presents one-layer projection neural networks based on projection operators for solving constrained variational inequalities and related optimization problems. Sufficient conditions for global convergence of the proposed neural networks are provided based on Lyapunov stability. Compared with the existing neural networks for variational inequalities and optimization, the proposed neural networks have lower model complexities. In addition, some improved criteria for global convergence are given. Compared with our previous work, a design parameter has been added in the projection neural network models, and it results in some improved performance. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural networks.