Visible to the public Biblio

Filters: Author is Saad, W.  [Clear All Filters]
2020-11-17
Abuzainab, N., Saad, W..  2018.  Misinformation Control in the Internet of Battlefield Things: A Multiclass Mean-Field Game. 2018 IEEE Global Communications Conference (GLOBECOM). :1—7.

In this paper, the problem of misinformation propagation is studied for an Internet of Battlefield Things (IoBT) system in which an attacker seeks to inject false information in the IoBT nodes in order to compromise the IoBT operations. In the considered model, each IoBT node seeks to counter the misinformation attack by finding the optimal probability of accepting a given information that minimizes its cost at each time instant. The cost is expressed in terms of the quality of information received as well as the infection cost. The problem is formulated as a mean-field game with multiclass agents which is suitable to model a massive heterogeneous IoBT system. For this game, the mean-field equilibrium is characterized, and an algorithm based on the forward backward sweep method is proposed. Then, the finite IoBT case is considered, and the conditions of convergence of the equilibria in the finite case to the mean-field equilibrium are presented. Numerical results show that the proposed scheme can achieve a two-fold increase in the quality of information (QoI) compared to the baseline when the nodes are always transmitting.

Abuzainab, N., Saad, W..  2018.  A Multiclass Mean-Field Game for Thwarting Misinformation Spread in the Internet of Battlefield Things. IEEE Transactions on Communications. 66:6643—6658.

In this paper, the problem of misinformation propagation is studied for an Internet of Battlefield Things (IoBT) system, in which an attacker seeks to inject false information in the IoBT nodes in order to compromise the IoBT operations. In the considered model, each IoBT node seeks to counter the misinformation attack by finding the optimal probability of accepting given information that minimizes its cost at each time instant. The cost is expressed in terms of the quality of information received as well as the infection cost. The problem is formulated as a mean-field game with multiclass agents, which is suitable to model a massive heterogeneous IoBT system. For this game, the mean-field equilibrium is characterized, and an algorithm based on the forward backward sweep method is proposed to find the mean-field equilibrium. Then, the finite-IoBT case is considered, and the conditions of convergence of the equilibria in the finite case to the mean-field equilibrium are presented. Numerical results show that the proposed scheme can achieve a 1.2-fold increase in the quality of information compared with a baseline scheme, in which the IoBT nodes are always transmitting. The results also show that the proposed scheme can reduce the proportion of infected nodes by 99% compared with the baseline.

Hu, Y., Sanjab, A., Saad, W..  2019.  Dynamic Psychological Game Theory for Secure Internet of Battlefield Things (IoBT) Systems. IEEE Internet of Things Journal. 6:3712—3726.

In this paper, a novel anti-jamming mechanism is proposed to analyze and enhance the security of adversarial Internet of Battlefield Things (IoBT) systems. In particular, the problem is formulated as a dynamic psychological game between a soldier and an attacker. In this game, the soldier seeks to accomplish a time-critical mission by traversing a battlefield within a certain amount of time, while maintaining its connectivity with an IoBT network. The attacker, on the other hand, seeks to find the optimal opportunity to compromise the IoBT network and maximize the delay of the soldier's IoBT transmission link. The soldier and the attacker's psychological behavior are captured using tools from psychological game theory, with which the soldier's and attacker's intentions to harm one another are considered in their utilities. To solve this game, a novel learning algorithm based on Bayesian updating is proposed to find an ∈ -like psychological self-confirming equilibrium of the game.

2018-12-10
Hu, Y., Abuzainab, N., Saad, W..  2018.  Dynamic Psychological Game for Adversarial Internet of Battlefield Things Systems. 2018 IEEE International Conference on Communications (ICC). :1–6.

In this paper, a novel game-theoretic framework is introduced to analyze and enhance the security of adversarial Internet of Battlefield Things (IoBT) systems. In particular, a dynamic, psychological network interdiction game is formulated between a soldier and an attacker. In this game, the soldier seeks to find the optimal path to minimize the time needed to reach a destination, while maintaining a desired bit error rate (BER) performance by selectively communicating with certain IoBT devices. The attacker, on the other hand, seeks to find the optimal IoBT devices to attack, so as to maximize the BER of the soldier and hinder the soldier's progress. In this game, the soldier and attacker's first- order and second-order beliefs on each others' behavior are formulated to capture their psychological behavior. Using tools from psychological game theory, the soldier and attacker's intention to harm one another is captured in their utilities, based on their beliefs. A psychological forward induction-based solution is proposed to solve the dynamic game. This approach can find a psychological sequential equilibrium of the game, upon convergence. Simulation results show that, whenever the soldier explicitly intends to frustrate the attacker, the soldier's material payoff is increased by up to 15.6% compared to a traditional dynamic Bayesian game.

Abuzainab, N., Saad, W..  2018.  A Multiclass Mean-Field Game for Thwarting Misinformation Spread in the Internet of Battlefield Things (IoBT). IEEE Transactions on Communications. :1–1.

In this paper, the problem of misinformation propagation is studied for an Internet of Battlefield Things (IoBT) system in which an attacker seeks to inject false information in the IoBT nodes in order to compromise the IoBT operations. In the considered model, each IoBT node seeks to counter the misinformation attack by finding the optimal probability of accepting a given information that minimizes its cost at each time instant. The cost is expressed in terms of the quality of information received as well as the infection cost. The problem is formulated as a mean-field game with multiclass agents which is suitable to model a massive heterogeneous IoBT system. For this game, the mean-field equilibrium is characterized, and an algorithm based on the forward backward sweep method is proposed to find the mean-field equilibrium. Then, the finite IoBT case is considered, and the conditions of convergence of the equilibria in the finite case to the mean-field equilibrium are presented. Numerical results show that the proposed scheme can achieve a 1.2-fold increase in the quality of information (QoI) compared to a baseline scheme in which the IoBT nodes are always transmitting. The results also show that the proposed scheme can reduce the proportion of infected nodes by 99% compared to the baseline.

Abuzainab, N., Saad, W..  2018.  Dynamic Connectivity Game for Adversarial Internet of Battlefield Things Systems. IEEE Internet of Things Journal. 5:378–390.

In this paper, the problem of network connectivity is studied for an adversarial Internet of Battlefield Things (IoBT) system in which an attacker aims at disrupting the connectivity of the network by choosing to compromise one of the IoBT nodes at each time epoch. To counter such attacks, an IoBT defender attempts to reestablish the IoBT connectivity by either deploying new IoBT nodes or by changing the roles of existing nodes. This problem is formulated as a dynamic multistage Stackelberg connectivity game that extends classical connectivity games and that explicitly takes into account the characteristics and requirements of the IoBT network. In particular, the defender's payoff captures the IoBT latency as well as the sum of weights of disconnected nodes at each stage of the game. Due to the dependence of the attacker's and defender's actions at each stage of the game on the network state, the feedback Stackelberg solution [feedback Stackelberg equilibrium (FSE)] is used to solve the IoBT connectivity game. Then, sufficient conditions under which the IoBT system will remain connected, when the FSE solution is used, are determined analytically. Numerical results show that the expected number of disconnected sensors, when the FSE solution is used, decreases up to 46% compared to a baseline scenario in which a Stackelberg game with no feedback is used, and up to 43% compared to a baseline equal probability policy.