Visible to the public Biblio

Filters: Keyword is global convergence  [Clear All Filters]
2015-05-06
Talamo, M., Barchiesi, M.L., Merella, D., Schunck, C.H..  2014.  Global convergence in digital identity and attribute management: Emerging needs for standardization. ITU Kaleidoscope Academic Conference: Living in a converged world - Impossible without standards?, Proceedings of the 2014. :15-21.

In a converging world, where borders between countries are surpassed in the digital environment, it is necessary to develop systems that effectively replace the recognition “vis-a-vis” with digital means of recognizing and identifying entities and people. In this work we summarize the current standardization efforts in the area of digital identity management. We identify a number of open challenges that need to be addressed in the near future to ensure the interoperability and usability of digital identity management services in an efficient and privacy maintaining international framework. These challenges for standardization include: the management of identifiers for digital identities at the global level; attribute management including attribute format, structure, and assurance; procedures and protocols to link attributes to digital identities. Attention is drawn to key elements that should be considered in addressing these issues through standardization.

2015-04-30
Qingshan Liu, Tingwen Huang, Jun Wang.  2014.  One-Layer Continuous-and Discrete-Time Projection Neural Networks for Solving Variational Inequalities and Related Optimization Problems. Neural Networks and Learning Systems, IEEE Transactions on. 25:1308-1318.

This paper presents one-layer projection neural networks based on projection operators for solving constrained variational inequalities and related optimization problems. Sufficient conditions for global convergence of the proposed neural networks are provided based on Lyapunov stability. Compared with the existing neural networks for variational inequalities and optimization, the proposed neural networks have lower model complexities. In addition, some improved criteria for global convergence are given. Compared with our previous work, a design parameter has been added in the projection neural network models, and it results in some improved performance. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural networks.