Biblio
In this paper, we propose a compositional scheme for the construction of abstractions for networks of control systems by using the interconnection matrix and joint dissipativity-type properties of subsystems and their abstractions. In the proposed framework, the abstraction, itself a control system (possibly with a lower dimension), can be used as a substitution of the original system in the controller design process. Moreover, we provide a procedure for constructing abstractions of a class of nonlinear control systems by using the bounds on the slope of system nonlinearities. We illustrate the proposed results on a network of linear control systems by constructing its abstraction in a compositional way without requiring any condition on the number or gains of the subsystems. We use the abstraction as a substitute to synthesize a controller enforcing a certain linear temporal logic specification. This example particularly elucidates the effectiveness of dissipativity-type compositional reasoning for large-scale systems.
In this paper, we consider the problem of decentralized verification for large-scale cascade interconnections of linear subsystems such that dissipativity properties of the overall system are guaranteed with minimum knowledge of the dynamics. In order to achieve compositionality, we distribute the verification process among the individual subsystems, which utilize limited information received locally from their immediate neighbors. Furthermore, to obviate the need for full knowledge of the subsystem parameters, each decentralized verification rule employs a model-free learning structure; a reinforcement learning algorithm that allows for online evaluation of the appropriate storage function that can be used to verify dissipativity of the system up to that point. Finally, we show how the interconnection can be extended by adding learning-enabled subsystems while ensuring dissipativity.
Energy efficient High-Performance Computing (HPC) is becoming increasingly important. Recent ventures into this space have introduced an unlikely candidate to achieve exascale scientific computing hardware with a small energy footprint. ARM processors and embedded GPU accelerators originally developed for energy efficiency in mobile devices, where battery life is critical, are being repurposed and deployed in the next generation of supercomputers. Unfortunately, the performance of executing scientific workloads on many of these devices is largely unknown, yet the bulk of computation required in high-performance supercomputers is scientific. We present an analysis of one such scientific code, in the form of Gaussian Elimination, and evaluate both execution time and energy used on a range of embedded accelerator SoCs. These include three ARM CPUs and two mobile GPUs. Understanding how these low power devices perform on scientific workloads will be critical in the selection of appropriate hardware for these supercomputers, for how can we estimate the performance of tens of thousands of these chips if the performance of one is largely unknown?