Visible to the public Biblio

Filters: Keyword is NTRU  [Clear All Filters]
2023-07-12
Dwiko Satriyo, U. Y. S, Rahutomo, Faisal, Harjito, Bambang, Prasetyo, Heri.  2022.  DNA Cryptography Based on NTRU Cryptosystem to Improve Security. 2022 IEEE 8th Information Technology International Seminar (ITIS). :27—31.
Information exchange occurs all the time in today’s internet era. Some of the data are public, and some are private. Asymmetric cryptography plays a critical role in securing private data transfer. However, technological advances caused private data at risk due to the presence of quantum computers. Therefore, we need a new method for securing private data. This paper proposes combining DNA cryptography methods based on the NTRU cryptosystem to enhance security data confidentiality. This method is compared with conventional public key cryptography methods. The comparison shows that the proposed method has a slow encryption and decryption time compared to other methods except for RSA. However, the key generation time of the proposed method is much faster than other methods tested except for ECC. The proposed method is superior in key generation time and considerably different from other tested methods. Meanwhile, the encryption and decryption time is slower than other methods besides RSA. The test results can get different results based on the programming language used.
2022-07-14
Mittal, Sonam, Kaur, Prabhjot, Ramkumar, K.R..  2021.  Achieving Privacy and Security Using QR-Code through Homomorphic Encryption and Steganography. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1–6.
Security is a most concerning matter for client's data in today's emerging technological world in each field, like banking, management, retail, shopping, communication, education, etc. Arise in cyber-crime due to the black hat community, there is always a need for a better way to secure the client's sensitive information, Security is the key point in online banking as the threat of unapproved online access to a client's data is very significant as it ultimately danger to bank reputation. The more secure and powerful methods can allow a client to work with untrusted parties. Paper is focusing on how secure banking transaction system can work by using homomorphic encryption and steganography techniques. For data encryption NTRU, homomorphic encryption can be used and to hide details through the QR code, a cover image can be embed using steganography techniques.
2022-02-07
Qin, Zhenhui, Tong, Rui, Wu, Xingjun, Bai, Guoqiang, Wu, Liji, Su, Linlin.  2021.  A Compact Full Hardware Implementation of PQC Algorithm NTRU. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). :792–797.
With the emergence and development of quantum computers, the traditional public-key cryptography (PKC) is facing the risk of being cracked. In order to resist quantum attacks and ensure long-term communication security, NIST launched a global collection of Post Quantum Cryptography (PQC) standards in 2016, and it is currently in the third round of selection. There are three Lattice-based PKC algorithms that stand out, and NTRU is one of them. In this article, we proposed the first complete and compact full hardware implementation of NTRU algorithm submitted in the third round. By using one structure to complete the design of the three types of complex polynomial multiplications in the algorithm, we achieved better performance while reducing area costs.
2017-12-04
Sattar, N. S., Adnan, M. A., Kali, M. B..  2017.  Secured aerial photography using Homomorphic Encryption. 2017 International Conference on Networking, Systems and Security (NSysS). :107–114.

Aerial photography is fast becoming essential in scientific research that requires multi-agent system in several perspective and we proposed a secured system using one of the well-known public key cryptosystem namely NTRU that is somewhat homomorphic in nature. Here we processed images of aerial photography that were captured by multi-agents. The agents encrypt the images and upload those in the cloud server that is untrusted. Cloud computing is a buzzword in modern era and public cloud is being used by people everywhere for its shared, on-demand nature. Cloud Environment faces a lot of security and privacy issues that needs to be solved. This paper focuses on how to use cloud so effectively that there remains no possibility of data or computation breaches from the cloud server itself as it is prone to the attack of treachery in different ways. The cloud server computes on the encrypted data without knowing the contents of the images. After concatenation, encrypted result is delivered to the concerned authority where it is decrypted retaining its originality. We set up our experiment in Amazon EC2 cloud server where several instances were the agents and an instance acted as the server. We varied several parameters so that we could minimize encryption time. After experimentation we produced our desired result within feasible time sustaining the image quality. This work ensures data security in public cloud that was our main concern.