Visible to the public Biblio

Filters: Keyword is transportation systems  [Clear All Filters]
2018-05-02
Yao, Y., Xiao, B., Wu, G., Liu, X., Yu, Z., Zhang, K., Zhou, X..  2017.  Voiceprint: A Novel Sybil Attack Detection Method Based on RSSI for VANETs. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :591–602.

Vehicular Ad Hoc Networks (VANETs) enable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications that bring many benefits and conveniences to improve the road safety and drive comfort in future transportation systems. Sybil attack is considered one of the most risky threats in VANETs since a Sybil attacker can generate multiple fake identities with false messages to severely impair the normal functions of safety-related applications. In this paper, we propose a novel Sybil attack detection method based on Received Signal Strength Indicator (RSSI), Voiceprint, to conduct a widely applicable, lightweight and full-distributed detection for VANETs. To avoid the inaccurate position estimation according to predefined radio propagation models in previous RSSI-based detection methods, Voiceprint adopts the RSSI time series as the vehicular speech and compares the similarity among all received time series. Voiceprint does not rely on any predefined radio propagation model, and conducts independent detection without the support of the centralized infrastructure. It has more accurate detection rate in different dynamic environments. Extensive simulations and real-world experiments demonstrate that the proposed Voiceprint is an effective method considering the cost, complexity and performance.

2017-12-12
Pan, X., Yang, Y., Zhang, G., Zhang, B..  2017.  Resilience-based optimization of recovery strategies for network systems. 2017 Second International Conference on Reliability Systems Engineering (ICRSE). :1–6.

Network systems, such as transportation systems and water supply systems, play important roles in our daily life and industrial production. However, a variety of disruptive events occur during their life time, causing a series of serious losses. Due to the inevitability of disruption, we should not only focus on improving the reliability or the resistance of the system, but also pay attention to the ability of the system to response timely and recover rapidly from disruptive events. That is to say we need to pay more attention to the resilience. In this paper, we describe two resilience models, quotient resilience and integral resilience, to measure the final recovered performance and the performance cumulative process during recovery respectively. Based on these two models, we implement the optimization of the system recovery strategies after disruption, focusing on the repair sequence of the damaged components and the allocation scheme of resource. The proposed research in this paper can serve as guidance to prioritize repair tasks and allocate resource reasonably.