Biblio
With the rapid development of IoT in recent years, IoT is increasingly being used as an endpoint of supply chains. In general, as the majority of data is now being stored and shared over the network, information security is an important issue in terms of secure supply chain management. In response to cyber security breaches and threats, there has been much research and development on the secure storage and transfer of data over the network. However, there is a relatively limited amount of research and proposals for the security of endpoints, such as IoT linked in the supply chain network. In addition, it is difficult to ensure reliability for IoT itself due to a lack of resources such as CPU power and storage. Ensuring the reliability of IoT is essential when IoT is integrated into the supply chain. Thus, in order to secure the supply chain, we need to improve the reliability of IoT, the endpoint of the supply chain. In this work, we examine the use of IoT gateways, client certificates, and IdP as methods to compensate for the lack of IoT resources. The results of our qualitative evaluation demonstrate that using the IdP method is the most effective.
This paper is based on the previous research that selects the proper surrogate nodes for fast recovery mechanism in industrial IoT (Internet of Things) Environment which uses a variety of sensors to collect the data and exchange the collected data in real-time for creating added value. We are going to suggest the way that how to decide the number of surrogate node automatically in different deployed industrial IoT Environment so that minimize the system recovery time when the central server likes IoT gateway is in failure. We are going to use the network simulator to measure the recovery time depending on the number of the selected surrogate nodes according to the sub-devices which are connected to the IoT gateway.