Visible to the public Biblio

Filters: Keyword is Selfish nodes  [Clear All Filters]
2019-06-10
Hmouda, E., Li, W..  2018.  Detection and Prevention of Attacks in MANETs by Improving the EAACK Protocol. SoutheastCon 2018. :1–7.

Mobile Ad Hoc Networks are dynamic in nature and have no rigid or reliable network infrastructure by their very definition. They are expected to be self-governed and have dynamic wireless links which are not entirely reliable in terms of connectivity and security. Several factors could cause their degradation, such as attacks by malicious and selfish nodes which result in data carrying packets being dropped which in turn could cause breaks in communication between nodes in the network. This paper aims to address the issue of remedy and mitigation of the damage caused by packet drops. We proposed an improvement on the EAACK protocol to reduce the network overhead packet delivery ratio by using hybrid cryptography techniques DES due to its higher efficiency in block encryption, and RSA due to its management in key cipher. Comparing to the existing approaches, our simulated results show that hybrid cryptography techniques provide higher malicious behavior detection rates, and improve the performance. This research can also lead to more future efforts in using hybrid encryption based authentication techniques for attack detection/prevention in MANETs.

2018-06-20
Shabut, A. M., Dahal, K., Kaiser, M. S., Hossain, M. A..  2017.  Malicious insider threats in tactical MANET: The performance analysis of DSR routing protocol. 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC). :187–192.

Tactical Mobile Ad-hoc NETworks (T-MANETs) are mainly used in self-configuring automatic vehicles and robots (also called nodes) for the rescue and military operations. A high dynamic network architecture, nodes unreliability, nodes misbehavior as well as an open wireless medium make it very difficult to assume the nodes cooperation in the `ad-hoc network or comply with routing rules. The routing protocols in the T-MANET are unprotected and subsequently result in various kinds of nodes misbehavior's (such as selfishness and denial of service). This paper introduces a comprehensive analysis of the packet dropping attack includes three types of misbehavior conducted by insiders in the T-MANETs namely black hole, gray hole, and selfish behaviours. An insider threat model is appended to a state-of-the-art routing protocol (such as DSR) and analyze the effect of packet dropping attack on the performance evaluation of DSR in the T-MANET. This paper contributes to the existing knowledge in a way it allows further security research to understand the behaviours of the main threats in MANETs which depends on nods defection in the packet forwarding. The simulation of the packet dropping attack is conducted using the Network Simulator 2 (NS2). It has been found that the network throughput has dropped considerably for black and gray hole attacks whereas the selfish nodes delay the network flow. Moreover, the packet drop rate and energy consumption rate are higher for black and gray hole attacks.

2018-04-11
Djedjig, N., Tandjaoui, D., Medjek, F., Romdhani, I..  2017.  New Trust Metric for the RPL Routing Protocol. 2017 8th International Conference on Information and Communication Systems (ICICS). :328–335.

Establishing trust relationships between routing nodes represents a vital security requirement to establish reliable routing processes that exclude infected or selfish nodes. In this paper, we propose a new security scheme for the Internet of things and mainly for the RPL (Routing Protocol for Low-power and Lossy Networks) called: Metric-based RPL Trustworthiness Scheme (MRTS). The primary aim is to enhance RPL security and deal with the trust inference problem. MRTS addresses trust issue during the construction and maintenance of routing paths from each node to the BR (Border Router). To handle this issue, we extend DIO (DODAG Information Object) message by introducing a new trust-based metric ERNT (Extended RPL Node Trustworthiness) and a new Objective Function TOF (Trust Objective Function). In fact, ERNT represents the trust values for each node within the network, and TOF demonstrates how ERNT is mapped to path cost. In MRTS all nodes collaborate to calculate ERNT by taking into account nodes' behavior including selfishness, energy, and honesty components. We implemented our scheme by extending the distributed Bellman-Ford algorithm. Evaluation results demonstrated that the new scheme improves the security of RPL.

2017-12-12
Sowmyadevi, D., Karthikeyan, K..  2017.  Merkle-Hellman knapsack-side channel monitoring based secure scheme for detecting provenance forgery and selfish nodes in wireless sensor networks. 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–8.

Provenance counterfeit and packet loss assaults are measured as threats in the large scale wireless sensor networks which are engaged for diverse application domains. The assortments of information source generate necessitate promising the reliability of information such as only truthful information is measured in the decision procedure. Details about the sensor nodes play an major role in finding trust value of sensor nodes. In this paper, a novel lightweight secure provenance method is initiated for improving the security of provenance data transmission. The anticipated system comprises provenance authentication and renovation at the base station by means of Merkle-Hellman knapsack algorithm based protected provenance encoding in the Bloom filter framework. Side Channel Monitoring (SCM) is exploited for noticing the presence of selfish nodes and packet drop behaviors. This lightweight secure provenance method decreases the energy and bandwidth utilization with well-organized storage and secure data transmission. The investigational outcomes establishes the efficacy and competence of the secure provenance secure system by professionally noticing provenance counterfeit and packet drop assaults which can be seen from the assessment in terms of provenance confirmation failure rate, collection error, packet drop rate, space complexity, energy consumption, true positive rate, false positive rate and packet drop attack detection.