Biblio
The Semantic Web today is a web that allows for intelligent knowledge retrieval by means of semantically annotated tags. This web also known as Intelligent web aims to provide meaningful information to man and machines equally. However, the information thus provided lacks the component of trust. Therefore we propose a method to embed trust in semantic web documents by the concept of provenance which provides answers to who, when, where and by whom the documents were created or modified. This paper demonstrates the same using the Manchester approach of provenance implemented in a University Ontology.
Securing their critical documents on the cloud from data threats is a major challenge faced by organizations today. Controlling and limiting access to such documents requires a robust and trustworthy access control mechanism. In this paper, we propose a semantically rich access control system that employs an access broker module to evaluate access decisions based on rules generated using the organizations confidentiality policies. The proposed system analyzes the multi-valued attributes of the user making the request and the requested document that is stored on a cloud service platform, before making an access decision. Furthermore, our system guarantees an end-to-end oblivious data transaction between the organization and the cloud service provider using oblivious storage techniques. Thus, an organization can use our system to secure their documents as well as obscure their access pattern details from an untrusted cloud service provider.
The Sensor Web is evolving into a complex information space, where large volumes of sensor observation data are often consumed by complex applications. Provenance has become an important issue in the Sensor Web, since it allows applications to answer “what”, “when”, “where”, “who”, “why”, and “how” queries related to observations and consumption processes, which helps determine the usability and reliability of data products. This paper investigates characteristics and requirements of provenance in the Sensor Web and proposes an interoperable approach to building a provenance model for the Sensor Web. Our provenance model extends the W3C PROV Data Model with Sensor Web domain vocabularies. It is developed using Semantic Web technologies and thus allows provenance information of sensor observations to be exposed in the Web of Data using the Linked Data approach. A use case illustrates the applicability of the approach.