Biblio
Todays analyzing web weaknesses and vulnerabilities in order to find security attacks has become more urgent. In case there is a communication contrary to the system security policies, a covert channel has been created. The attacker can easily disclosure information from the victim's system with just one public access permission. Covert timing channels, unlike covert storage channels, do not have memory storage and they draw less attention. Different methods have been proposed for their identification, which generally benefit from the shape of traffic and the channel's regularity. In this article, an entropy-based detection method is designed and implemented. The attacker can adjust the amount of channel entropy by controlling measures such as changing the channel's level or creating noise on the channel to protect from the analyst's detection. As a result, the entropy threshold is not always constant for detection. By comparing the entropy from different levels of the channel and the analyst, we conclude that the analyst must investigate traffic at all possible levels.
This paper focuses on one type of Covert Storage Channel (CSC) that uses the 6-bit TCP flag header in TCP/IP network packets to transmit secret messages between accomplices. We use relative entropy to characterize the irregularity of network flows in comparison to normal traffic. A normal profile is created by the frequency distribution of TCP flags in regular traffic packets. In detection, the TCP flag frequency distribution of network traffic is computed for each unique IP pair. In order to evaluate the accuracy and efficiency of the proposed method, this study uses real regular traffic data sets as well as CSC messages using coding schemes under assumptions of both clear text, composed by a list of keywords common in Unix systems, and encrypted text. Moreover, smart accomplices may use only those TCP flags that are ever appearing in normal traffic. Then, in detection, the relative entropy can reveal the dissimilarity of a different frequency distribution from this normal profile. We have also used different data processing methods in detection: one method summarizes all the packets for a pair of IP addresses into one flow and the other uses a sliding moving window over such a flow to generate multiple frames of packets. The experimentation results, displayed by Receiver Operating Characteristic (ROC) curves, have shown that the method is promising to differentiate normal and CSC traffic packet streams. Furthermore the delay of raising an alert is analyzed for CSC messages to show its efficiency.