Visible to the public Biblio

Filters: Keyword is relative entropy  [Clear All Filters]
2018-03-05
Bhattacharjee, Shameek, Thakur, Aditya, Silvestri, Simone, Das, Sajal K..  2017.  Statistical Security Incident Forensics Against Data Falsification in Smart Grid Advanced Metering Infrastructure. Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy. :35–45.

Compromised smart meters reporting false power consumption data in Advanced Metering Infrastructure (AMI) may have drastic consequences on a smart grid's operations. Most existing works only deal with electricity theft from customers. However, several other types of data falsification attacks are possible, when meters are compromised by organized rivals. In this paper, we first propose a taxonomy of possible data falsification strategies such as additive, deductive, camouflage and conflict, in AMI micro-grids. Then, we devise a statistical anomaly detection technique to identify the incidence of proposed attack types, by studying their impact on the observed data. Subsequently, a trust model based on Kullback-Leibler divergence is proposed to identify compromised smart meters for additive and deductive attacks. The resultant detection rates and false alarms are minimized through a robust aggregate measure that is calculated based on the detected attack type and successfully discriminating legitimate changes from malicious ones. For conflict and camouflage attacks, a generalized linear model and Weibull function based kernel trick is used over the trust score to facilitate more accurate classification. Using real data sets collected from AMI, we investigate several trade-offs that occur between attacker's revenue and costs, as well as the margin of false data and fraction of compromised nodes. Experimental results show that our model has a high true positive detection rate, while the average false alarm rate is just 8%, for most practical attack strategies, without depending on the expensive hardware based monitoring.

2017-12-12
Chow, J., Li, X., Mountrouidou, X..  2017.  Raising flags: Detecting covert storage channels using relative entropy. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :25–30.

This paper focuses on one type of Covert Storage Channel (CSC) that uses the 6-bit TCP flag header in TCP/IP network packets to transmit secret messages between accomplices. We use relative entropy to characterize the irregularity of network flows in comparison to normal traffic. A normal profile is created by the frequency distribution of TCP flags in regular traffic packets. In detection, the TCP flag frequency distribution of network traffic is computed for each unique IP pair. In order to evaluate the accuracy and efficiency of the proposed method, this study uses real regular traffic data sets as well as CSC messages using coding schemes under assumptions of both clear text, composed by a list of keywords common in Unix systems, and encrypted text. Moreover, smart accomplices may use only those TCP flags that are ever appearing in normal traffic. Then, in detection, the relative entropy can reveal the dissimilarity of a different frequency distribution from this normal profile. We have also used different data processing methods in detection: one method summarizes all the packets for a pair of IP addresses into one flow and the other uses a sliding moving window over such a flow to generate multiple frames of packets. The experimentation results, displayed by Receiver Operating Characteristic (ROC) curves, have shown that the method is promising to differentiate normal and CSC traffic packet streams. Furthermore the delay of raising an alert is analyzed for CSC messages to show its efficiency.