Visible to the public Biblio

Filters: Keyword is Performance Metrics  [Clear All Filters]
2023-03-31
Premalatha, N., Sujatha, S..  2022.  An Optimization driven – Deep Belief Neural Network Model for Prediction of Employment Status after Graduation. 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). :1–5.
Higher education management has problems producing 100% of graduates capable of responding to the needs of industry while industry also is struggling to find qualified graduates that responded to their needs in part because of the inefficient way of evaluating problems, as well as because of weaknesses in the evaluation of problem-solving capabilities. The objective of this paper is to propose an appropriate classification model to be used for predicting and evaluating the attributes of the data set of the student in order to meet the selection criteria required by the industries in the academic field. The dataset required for this analysis was obtained from a private firm and the execution was carried out using Chimp Optimization Algorithm (COA) based Deep Belief Neural Network (COA-DBNN) and the obtained results are compared with various classifiers such as Logistic Regression (LR), Decision Tree (DT) and Random Forest (RF). The proposed model outperforms other classifiers in terms of various performance metrics. This critical analysis will help the college management to make a better long-term plan for producing graduates who are skilled, knowledgeable and fulfill the industry needs as well.
2021-04-08
Wu, X., Yang, Z., Ling, C., Xia, X..  2016.  Artificial-Noise-Aided Message Authentication Codes With Information-Theoretic Security. IEEE Transactions on Information Forensics and Security. 11:1278–1290.
In the past, two main approaches for the purpose of authentication, including information-theoretic authentication codes and complexity-theoretic message authentication codes (MACs), were almost independently developed. In this paper, we consider to construct new MACs, which are both computationally secure and information-theoretically secure. Essentially, we propose a new cryptographic primitive, namely, artificial-noise-aided MACs (ANA-MACs), where artificial noise is used to interfere with the complexity-theoretic MACs and quantization is further employed to facilitate packet-based transmission. With a channel coding formulation of key recovery in the MACs, the generation of standard authentication tags can be seen as an encoding process for the ensemble of codes, where the shared key between Alice and Bob is considered as the input and the message is used to specify a code from the ensemble of codes. Then, we show that artificial noise in ANA-MACs can be well employed to resist the key recovery attack even if the opponent has an unlimited computing power. Finally, a pragmatic approach for the analysis of ANA-MACs is provided, and we show how to balance the three performance metrics, including the completeness error, the false acceptance probability, and the conditional equivocation about the key. The analysis can be well applied to a class of ANA-MACs, where MACs with Rijndael cipher are employed.
2021-03-09
Chakravorty, R., Prakash, J..  2020.  A Review on Prevention and Detection Schemes for Black Hole Attacks in MANET. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :801–806.
Mobile Ad hoc Network (MANET) is one of the emerging technologies to communicate between nodes and its decentralized structure, self-configuring nature are the few properties of this Ad hoc network. Due to its undefined structure, it has found its usage in the desired and temporary communication network. MANET has many routing protocols governing it and due to its changing topology, there can be many issues arise in recent times. Problems like no central node, limited energy, and the quality of service, performance, design issues, and security challenges have been bugging the researchers. The black hole attacks are the kind that cause ad hoc network to be at loss of information and make the source to believe that it has the actual least distance path to the destination, but in real scenario the packets do not get forwarded to neighbouring nodes. In this paper, we have discussed different solutions over the past years to deal with such attacks. A summary of the schemes with their results and drawbacks in terms of performance metrics is also given.
2021-03-04
Nugraha, B., Nambiar, A., Bauschert, T..  2020.  Performance Evaluation of Botnet Detection using Deep Learning Techniques. 2020 11th International Conference on Network of the Future (NoF). :141—149.

Botnets are one of the major threats on the Internet. They are used for malicious activities to compromise the basic network security goals, namely Confidentiality, Integrity, and Availability. For reliable botnet detection and defense, deep learning-based approaches were recently proposed. In this paper, four different deep learning models, namely Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), hybrid CNN-LSTM, and Multi-layer Perception (MLP) are applied for botnet detection and simulation studies are carried out using the CTU-13 botnet traffic dataset. We use several performance metrics such as accuracy, sensitivity, specificity, precision, and F1 score to evaluate the performance of each model on classifying both known and unknown (zero-day) botnet traffic patterns. The results show that our deep learning models can accurately and reliably detect both known and unknown botnet traffic, and show better performance than other deep learning models.

2020-08-28
Hasanin, Tawfiq, Khoshgoftaar, Taghi M., Leevy, Joffrey L..  2019.  A Comparison of Performance Metrics with Severely Imbalanced Network Security Big Data. 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). :83—88.

Severe class imbalance between the majority and minority classes in large datasets can prejudice Machine Learning classifiers toward the majority class. Our work uniquely consolidates two case studies, each utilizing three learners implemented within an Apache Spark framework, six sampling methods, and five sampling distribution ratios to analyze the effect of severe class imbalance on big data analytics. We use three performance metrics to evaluate this study: Area Under the Receiver Operating Characteristic Curve, Area Under the Precision-Recall Curve, and Geometric Mean. In the first case study, models were trained on one dataset (POST) and tested on another (SlowlorisBig). In the second case study, the training and testing dataset roles were switched. Our comparison of performance metrics shows that Area Under the Precision-Recall Curve and Geometric Mean are sensitive to changes in the sampling distribution ratio, whereas Area Under the Receiver Operating Characteristic Curve is relatively unaffected. In addition, we demonstrate that when comparing sampling methods, borderline-SMOTE2 outperforms the other methods in the first case study, and Random Undersampling is the top performer in the second case study.

2020-06-29
Liang, Xiaoyu, Znati, Taieb.  2019.  An empirical study of intelligent approaches to DDoS detection in large scale networks. 2019 International Conference on Computing, Networking and Communications (ICNC). :821–827.
Distributed Denial of Services (DDoS) attacks continue to be one of the most challenging threats to the Internet. The intensity and frequency of these attacks are increasing at an alarming rate. Numerous schemes have been proposed to mitigate the impact of DDoS attacks. This paper presents a comprehensive empirical evaluation of Machine Learning (ML)based DDoS detection techniques, to gain better understanding of their performance in different types of environments. To this end, a framework is developed, focusing on different attack scenarios, to investigate the performance of a class of ML-based techniques. The evaluation uses different performance metrics, including the impact of the “Class Imbalance Problem” on ML-based DDoS detection. The results of the comparative analysis show that no one technique outperforms all others in all test cases. Furthermore, the results underscore the need for a method oriented feature selection model to enhance the capabilities of ML-based detection techniques. Finally, the results show that the class imbalance problem significantly impacts performance, underscoring the need to address this problem in order to enhance ML-based DDoS detection capabilities.
2020-04-03
Calvert, Chad L., Khoshgoftaar, Taghi M..  2019.  Threshold Based Optimization of Performance Metrics with Severely Imbalanced Big Security Data. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). :1328—1334.

Proper evaluation of classifier predictive models requires the selection of appropriate metrics to gauge the effectiveness of a model's performance. The Area Under the Receiver Operating Characteristic Curve (AUC) has become the de facto standard metric for evaluating this classifier performance. However, recent studies have suggested that AUC is not necessarily the best metric for all types of datasets, especially those in which there exists a high or severe level of class imbalance. There is a need to assess which specific metrics are most beneficial to evaluate the performance of highly imbalanced big data. In this work, we evaluate the performance of eight machine learning techniques on a severely imbalanced big dataset pertaining to the cyber security domain. We analyze the behavior of six different metrics to determine which provides the best representation of a model's predictive performance. We also evaluate the impact that adjusting the classification threshold has on our metrics. Our results find that the C4.5N decision tree is the optimal learner when evaluating all presented metrics for severely imbalanced Slow HTTP DoS attack data. Based on our results, we propose that the use of AUC alone as a primary metric for evaluating highly imbalanced big data may be ineffective, and the evaluation of metrics such as F-measure and Geometric mean can offer substantial insight into the true performance of a given model.

2019-12-05
Sejaphala, Lanka, Velempini, Mthulisi, Dlamini, Sabelo Velemseni.  2018.  HCOBASAA: Countermeasure Against Sinkhole Attacks in Software-Defined Wireless Sensor Cognitive Radio Networks. 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD). :1-5.

Software-defined wireless sensor cognitive radio network is one of the emerging technologies which is simple, agile, and flexible. The sensor network comprises of a sink node with high processing power. The sensed data is transferred to the sink node in a hop-by-hop basis by sensor nodes. The network is programmable, automated, agile, and flexible. The sensor nodes are equipped with cognitive radios, which sense available spectrum bands and transmit sensed data on available bands, which improves spectrum utilization. Unfortunately, the Software-defined wireless sensor cognitive radio network is prone to security issues. The sinkhole attack is the most common attack which can also be used to launch other attacks. We propose and evaluate the performance of Hop Count-Based Sinkhole Attack detection Algorithm (HCOBASAA) using probability of detection, probability of false negative, and probability of false positive as the performance metrics. On average HCOBASAA managed to yield 100%, 75%, and 70% probability of detection.

2019-03-22
Quweider, M., Lei, H., Zhang, L., Khan, F..  2018.  Managing Big Data in Visual Retrieval Systems for DHS Applications: Combining Fourier Descriptors and Metric Space Indexing. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :188-193.

Image retrieval systems have been an active area of research for more than thirty years progressively producing improved algorithms that improve performance metrics, operate in different domains, take advantage of different features extracted from the images to be retrieved, and have different desirable invariance properties. With the ever-growing visual databases of images and videos produced by a myriad of devices comes the challenge of selecting effective features and performing fast retrieval on such databases. In this paper, we incorporate Fourier descriptors (FD) along with a metric-based balanced indexing tree as a viable solution to DHS (Department of Homeland Security) needs to for quick identification and retrieval of weapon images. The FDs allow a simple but effective outline feature representation of an object, while the M-tree provide a dynamic, fast, and balanced search over such features. Motivated by looking for applications of interest to DHS, we have created a basic guns and rifles databases that can be used to identify weapons in images and videos extracted from media sources. Our simulations show excellent performance in both representation and fast retrieval speed.

2017-12-20
Ejike, C., Kouvatsos, D..  2017.  Combined sensing, performance and security trade-offs in cognitive radio networks. 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). :1–4.

Cognitive radio networks (CRNs) enable secondary users (SU) to make use of licensed spectrum without interfering with the signal generated by primary users (PUs). To avoid such interference, the SU is required to sense the medium for a period of time and eventually use it only if the band is perceived to be idle. In this context, the encryption process is carried out for the SU requests prior to their transmission whilst the strength of the security in CRNs is directly proportional to the length of the encryption key. If a request of a PU on arrival finds an SU request being either encrypted or transmitted, then the SU is preempted from service. However, excessive sensing time for the detection of free spectrum by SUs as well as extended periods of the CRN being at an insecure state have an adverse impact on network performance. To this end, a generalized stochastic Petri net (GSPN) is proposed in order to investigate sensing vs. security vs. performance trade-offs, leading to an efficient use of the spectrum band. Typical numerical simulation experiments are carried out, based on the application of the Mobius Petri Net Package and associated interpretations are made.