Biblio
In order to be more environmentally friendly, a lot of parts and aspects of life become electrified to reduce the usage of fossil fuels. This can be seen in the increased number of electrical vehicles in everyday life. This of course only makes a positive impact on the environment, if the electricity is produced environmentally friendly and comes from renewable sources. But when the green electrical power is produced, it still needs to be transported to where it's needed, which is not necessarily near the production site. In China, one of the ways to do this transport is to use High Voltage Direct Current (HVDC) technology. This of course means, that the current has to be converted to DC before being transported to the end user. That implies that the converter stations are of great importance for the grid security. Therefore, a precise monitoring of the stations is necessary. Ideally, this could be accomplished with wireless sensor nodes with an autarkic energy supply. A role in this energy supply could be played by a thermoelectrical generator (TEG). But to assess the power generated in the specific environment, a simulation would be highly desirable, to evaluate the power gained from the temperature difference in the converter station. This paper proposes a method to simulate the generated power by combining a model for the generator with a Computational Fluid Dynamics (CFD) model converter.
Distributed consensus is a prototypical distributed optimization and decision making problem in social, economic and engineering networked systems. In collaborative applications investigating the effects of adversaries is a critical problem. In this paper we investigate distributed consensus problems in the presence of adversaries. We combine key ideas from distributed consensus in computer science on one hand and in control systems on the other. The main idea is to detect Byzantine adversaries in a network of collaborating agents who have as goal reaching consensus, and exclude them from the consensus process and dynamics. We describe a novel trust-aware consensus algorithm that integrates the trust evaluation mechanism into the distributed consensus algorithm and propose various local decision rules based on local evidence. To further enhance the robustness of trust evaluation itself, we also introduce a trust propagation scheme in order to take into account evidences of other nodes in the network. The resulting algorithm is flexible and extensible, and can incorporate more complex designs of decision rules and trust models. To demonstrate the power of our trust-aware algorithm, we provide new theoretical security performance results in terms of miss detection and false alarm rates for regular and general trust graphs. We demonstrate through simulations that the new trust-aware consensus algorithm can effectively detect Byzantine adversaries and can exclude them from consensus iterations even in sparse networks with connectivity less than 2f+1, where f is the number of adversaries.