Visible to the public Biblio

Filters: Keyword is massive data  [Clear All Filters]
2020-08-24
Liu, Hongling.  2019.  Research on Feasibility Path of Technology Supervision and Technology Protection in Big Data Environment. 2019 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :293–296.
Big data will bring revolutionary changes from life to thinking for society as a whole. At the same time, the massive data and potential value of big data are subject to many security risks. Aiming at the above problems, a data privacy protection model for big data platform is proposed. First, the data privacy protection model of big data for data owners is introduced in detail, including protocol design, logic design, complexity analysis and security analysis. Then, the query privacy protection model of big data for ordinary users is introduced in detail, including query protocol design and query mode design. Complexity analysis and safety analysis are performed. Finally, a stand-alone simulation experiment is built for the proposed privacy protection model. Experimental data is obtained and analyzed. The feasibility of the privacy protection model is verified.
2019-09-11
Ren, Yidan, Zhu, Zhengzhou, Chen, Xiangzhou, Ding, Huixia, Zhang, Geng.  2018.  Research on Defect Detection Technology of Trusted Behavior Decision Tree Based on Intelligent Data Semantic Analysis of Massive Data. Proceedings of the 10th International Conference on Computer Modeling and Simulation. :168–175.

With the rapid development of information technology, software systems' scales and complexity are showing a trend of expansion. The users' needs for the software security, software security reliability and software stability are growing increasingly. At present, the industry has applied machine learning methods to the fields of defect detection to repair and improve software defects through the massive data intelligent semantic analysis or code scanning. The model in machine learning is faced with big difficulty of model building, understanding, and the poor visualization in the field of traditional software defect detection. In view of the above problems, we present a point of view that intelligent semantic analysis technology based on massive data, and using the trusted behavior decision tree model to analyze the soft behavior by layered detection technology. At the same time, it is equipped related test environment to compare the tested software. The result shows that the defect detection technology based on intelligent semantic analysis of massive data is superior to other techniques at the cost of building time and error reported ratio.

2017-12-20
Li, S., Wang, B..  2017.  A Method for Hybrid Bayesian Network Structure Learning from Massive Data Using MapReduce. 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids). :272–276.
Bayesian Network is the popular and important data mining model for representing uncertain knowledge. For large scale data it is often too costly to learn the accurate structure. To resolve this problem, much work has been done on migrating the structure learning algorithms to the MapReduce framework. In this paper, we introduce a distributed hybrid structure learning algorithm by combining the advantages of constraint-based and score-and-search-based algorithms. By reusing the intermediate results of MapReduce, the algorithm greatly simplified the computing work and got good results in both efficiency and accuracy.