Visible to the public Biblio

Filters: Keyword is Devices  [Clear All Filters]
2019-01-21
Alshehri, Asma, Benson, James, Patwa, Farhan, Sandhu, Ravi.  2018.  Access Control Model for Virtual Objects (Shadows) Communication for AWS Internet of Things. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. :175–185.

The concept of Internet of Things (IoT) has received considerable attention and development in recent years. There have been significant studies on access control models for IoT in academia, while companies have already deployed several cloud-enabled IoT platforms. However, there is no consensus on a formal access control model for cloud-enabled IoT. The access-control oriented (ACO) architecture was recently proposed for cloud-enabled IoT, with virtual objects (VOs) and cloud services in the middle layers. Building upon ACO, operational and administrative access control models have been published for virtual object communication in cloud-enabled IoT illustrated by a use case of sensing speeding cars as a running example. In this paper, we study AWS IoT as a major commercial cloud-IoT platform and investigate its suitability for implementing the afore-mentioned academic models of ACO and VO communication control. While AWS IoT has a notion of digital shadows closely analogous to VOs, it lacks explicit capability for VO communication and thereby for VO communication control. Thus there is a significant mismatch between AWS IoT and these academic models. The principal contribution of this paper is to reconcile this mismatch by showing how to use the mechanisms of AWS IoT to effectively implement VO communication models. To this end, we develop an access control model for virtual objects (shadows) communication in AWS IoT called AWS-IoT-ACMVO. We develop a proof-of-concept implementation of the speeding cars use case in AWS IoT under guidance of this model, and provide selected performance measurements. We conclude with a discussion of possible alternate implementations of this use case in AWS IoT.

2018-06-20
Kebede, T. M., Djaneye-Boundjou, O., Narayanan, B. N., Ralescu, A., Kapp, D..  2017.  Classification of Malware programs using autoencoders based deep learning architecture and its application to the microsoft malware Classification challenge (BIG 2015) dataset. 2017 IEEE National Aerospace and Electronics Conference (NAECON). :70–75.

Distinguishing and classifying different types of malware is important to better understanding how they can infect computers and devices, the threat level they pose and how to protect against them. In this paper, a system for classifying malware programs is presented. The paper describes the architecture of the system and assesses its performance on a publicly available database (provided by Microsoft for the Microsoft Malware Classification Challenge BIG2015) to serve as a benchmark for future research efforts. First, the malicious programs are preprocessed such that they are visualized as gray scale images. We then make use of an architecture comprised of multiple layers (multiple levels of encoding) to carry out the classification process of those images/programs. We compare the performance of this approach against traditional machine learning and pattern recognition algorithms. Our experimental results show that the deep learning architecture yields a boost in performance over those conventional/standard algorithms. A hold-out validation analysis using the superior architecture shows an accuracy in the order of 99.15%.

2017-12-20
Alshehri, A., Sandhu, R..  2017.  Access Control Models for Virtual Object Communication in Cloud-Enabled IoT. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :16–25.
The Internet of Things (IoT) is the latest evolution of the Internet, encompassing an enormous number of connected physical "things." The access-control oriented (ACO) architecture was recently proposed for cloud-enabled IoT, with virtual objects (VOs) and cloud services in the middle layers. A central aspect of ACO is to control communication among VOs. This paper develops operational and administrative access control models for this purpose, assuming topic-based publishsubscribe interaction among VOs. Operational models are developed using (i) access control lists for topics and capabilities for virtual objects and (ii) attribute-based access control, and it is argued that role-based access control is not suitable for this purpose. Administrative models for these two operational models are developed using (i) access control lists, (ii) role-based access control, and (iii) attribute-based access control. A use case illustrates the details of these access control models for VO communication, and their differences. An assessment of these models with respect to security and privacy preserving objectives of IoT is also provided.