Biblio
Filters: Keyword is physical layer (PHY) security [Clear All Filters]
Artificial Noise Projection Matrix Optimization Method for Secure Multi-Cast Wireless Communication. 2020 IEEE 8th International Conference on Information, Communication and Networks (ICICN). :33–37.
.
2020. Transmit beamforming and artificial noise (AN) methods have been widely employed to achieve wireless physical layer (PHY) secure transmissions. While most works focus on transmit beamforming optimization, little attention is paid to the design of artificial noise projection matrix (ANPM). In this paper, compared with traditional ANPM obtained by zero-forcing method, which only makes AN power uniform distribution in free space outside legitimate users (LU) locations, we design ANPM to maximize the interference on eavesdroppers without interference on LUs for multicast directional modulation (MCDM) scenario based on frequency diverse array (FDA). Furthermore, we extend our approach to the case of with imperfect locations of Eves. Finally, simulation results show that Eves can be seriously affected by the AN with perfect/imperfect locations, respectively.
An improved cooperative jamming strategy for PHY security in a multi-hop communications system. 2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM). :1–4.
.
2017. In this paper, an improved cooperative jamming (CJ) strategy is developed for physical layer (PHY) security in a multi-hop wireless communication system which employs beamforming in the last hop. Users are assigned to independent groups based on the merger-and-split rule in a coalition game. The secrecy capacity for a valid coalition is a non-convex optimization problem which cannot easily be solved. Therefore, restrictions are added to transform this into a convex problem, and this is solved to obtain a suboptimal closed-form solution for the secrecy capacity. Simulation results are presented which show that the proposed strategy outperforms other methods such as non-cooperation, relay cooperation, and previous CJ approaches in terms of the secrecy capacity. Further, it is shown that the proposed multi-hop solution is suitable for long distance communication systems.