Visible to the public Biblio

Filters: Keyword is cluster  [Clear All Filters]
2021-06-28
Sharnagat, Lekhchand, Babu, Rajesh, Adhikari, Jayant.  2020.  Trust Evaluation for Securing Compromised data Aggregation against the Collusion Attack in WSN. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :1–5.
With a storage space limit on the sensors, WSN has some drawbacks related to bandwidth and computational skills. This limited resources would reduce the amount of data transmitted across the network. For this reason, data aggregation is considered as a new process. Iterative filtration (IF) algorithms, which provide trust assessment to the various sources from which the data aggregation has been performed, are efficient in the present data aggregation algorithms. Trust assessment is done with weights from the simple average method to aggregation, which treats attack susceptibility. Iteration filter algorithms are stronger than the ordinary average, but they do not handle the current advanced attack that takes advantage of false information with many compromise nodes. Iterative filters are strengthened by an initial confidence estimate to track new and complex attacks, improving the solidity and accuracy of the IF algorithm. The new method is mainly concerned with attacks against the clusters and not against the aggregator. In this process, if an aggregator is attacked, the current system fails, and the information is eventually transmitted to the aggregator by the cluster members. This problem can be detected when both cluster members and aggregators are being targeted. It is proposed to choose an aggregator which chooses a new aggregator according to the remaining maximum energy and distance to the base station when an aggregator attack is detected. It also save time and energy compared to the current program against the corrupted aggregator node.
2020-08-03
Gopalakrishnan, S., Rajesh, A..  2019.  Cluster based Intrusion Detection System for Mobile Ad-hoc Network. 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM). 1:11–15.

Mobile Ad-hoc network is decentralized and composed of various individual devices for communicating with each other. Its distributed nature and infrastructure deficiency are the way for various attacks in the network. On implementing Intrusion detection systems (IDS) in ad-hoc node securities were enhanced by means of auditing and monitoring process. This system is composed with clustering protocols which are highly effective in finding the intrusions with minimal computation cost on power and overhead. The existing protocols were linked with the routes, which are not prominent in detecting intrusions. The poor route structure and route renewal affect the cluster hardly. By which the cluster are unstable and results in maximization processing along with network traffics. Generally, the ad hoc networks are structured with battery and rely on power limitation. It needs an active monitoring node for detecting and responding quickly against the intrusions. It can be attained only if the clusters are strong with extensive sustaining capability. Whenever the cluster changes the routes also change and the prominent processing of achieving intrusion detection will not be possible. This raises the need of enhanced clustering algorithm which solved these drawbacks and ensures the network securities in all manner. We proposed CBIDP (cluster based Intrusion detection planning) an effective clustering algorithm which is ahead of the existing routing protocol. It is persistently irrespective of routes which monitor the intrusion perfectly. This simplified clustering methodology achieves high detecting rates on intrusion with low processing as well as memory overhead. As it is irrespective of the routes, it also overcomes the other drawbacks like traffics, connections and node mobility on the network. The individual nodes in the network are not operative on finding the intrusion or malicious node, it can be achieved by collaborating the clustering with the system.

2020-04-06
Khan, JavedAkhtar.  2019.  —Multiple Cluster-Android lock Patterns (MALPs) for Smart Phone Authentication‖. 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). :619–623.
This paper proposes the implementation of progressive authentication service in smart android mobile phone. In this digital era, massive amount of work can be done in the digital form using the smart devices like smart phone , laptop, Tablets, etc. The number of smartphone users approx. reach to 299.24 million, as per the recent survey report [1] in 2019 this count will reach 2.7 billion and after 3 years, this count will increase up to 442.5 million. This article includes a cluster based progressive smart lock with a dependent combination that is short and more secure in nature. Android provides smart lock facilities with the combination of 9 dot, 6dot, 5dot, 4dot and 1-9 number. By using this mobile phone user will be able to generate pattern lock or number password for authentication. This is a single authentication system, this research paper includes a more secured multiple cluster based pattern match system.
2019-11-26
Khan, JavedAkhtar.  2019.  2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). :619-623.

This paper proposes the implementation of progressive authentication service in smart android mobile phone. In this digital era, massive amount of work can be done in the digital form using the smart devices like smart phone , laptop, Tablets, etc. The number of smartphone users approx. reach to 299.24 million, as per the recent survey report [1] in 2019 this count will reach 2.7 billion and after 3 years, this count will increase up to 442.5 million. This article includes a cluster based progressive smart lock with a dependent combination that is short and more secure in nature. Android provides smart lock facilities with the combination of 9 dot, 6dot, 5dot, 4dot and 1-9 number. By using this mobile phone user will be able to generate pattern lock or number password for authentication. This is a single authentication system, this research paper includes a more secured multiple cluster based pattern match system.

2019-10-28
Trunov, Artem S., Voronova, Lilia I., Voronov, Vyacheslav I., Ayrapetov, Dmitriy P..  2018.  Container Cluster Model Development for Legacy Applications Integration in Scientific Software System. 2018 IEEE International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :815–819.
Feature of modern scientific information systems is their integration with computing applications, providing distributed computer simulation and intellectual processing of Big Data using high-efficiency computing. Often these software systems include legacy applications in different programming languages, with non-standardized interfaces. To solve the problem of applications integration, containerization systems are using that allow to configure environment in the shortest time to deploy software system. However, there are no such systems for computer simulation systems with large number of nodes. The article considers the actual task of combining containers into a cluster, integrating legacy applications to manage the distributed software system MD-SLAG-MELT v.14, which supports high-performance computing and visualization of the computer experiments results. Testing results of the container cluster including automatic load sharing module for MD-SLAG-MELT system v.14. are given.
2018-02-21
Bai, Xu, Jiang, Lei, Dai, Qiong, Yang, Jiajia, Tan, Jianlong.  2017.  Acceleration of RSA processes based on hybrid ARM-FPGA cluster. 2017 IEEE Symposium on Computers and Communications (ISCC). :682–688.

Cooperation of software and hardware with hybrid architectures, such as Xilinx Zynq SoC combining ARM CPU and FPGA fabric, is a high-performance and low-power platform for accelerating RSA Algorithm. This paper adopts the none-subtraction Montgomery algorithm and the Chinese Remainder Theorem (CRT) to implement high-speed RSA processors, and deploys a 48-node cluster infrastructure based on Zynq SoC to achieve extremely high scalability and throughput of RSA computing. In this design, we use the ARM to implement node-to-node communication with the Message Passing Interface (MPI) while use the FPGA to handle complex calculation. Finally, the experimental results show that the overall performance is linear with the number of nodes. And the cluster achieves 6× 9× speedup against a multi-core desktop (Intel i7-3770) and comparable performance to a many-core server (288-core). In addition, we gain up to 2.5× energy efficiency compared to these two traditional platforms.

2017-12-20
Kim, M., Cho, H..  2017.  Secure Data Collection in Spatially Clustered Wireless Sensor Networks. 2017 25th International Conference on Systems Engineering (ICSEng). :268–276.
A wireless sensor network (WSN) can provide a low cost and flexible solution to sensing and monitoring for large distributed applications. To save energy and prolong the network lifetime, the WSN is often partitioned into a set of spatial clusters. Each cluster includes sensor nodes with similar sensing data, and only a few sensor nodes (samplers) report their sensing data to a base node. Then the base node may predict the missed data of non-samplers using the spatial correlation between sensor nodes. The problem is that the WSN is vulnerable to internal security threat such as node compromise. If the samplers are compromised and report incorrect data intentionally, then the WSN should be contaminated rapidly due to the process of data prediction at the base node. In this paper, we propose three algorithms to detect compromised samplers for secure data collection in the WSN. The proposed algorithms leverage the unique property of spatial clustering to alleviate the overhead of compromised node detection. Experiment results indicate that the proposed algorithms can identify compromised samplers with a high accuracy and low energy consumption when as many as 50% sensor nodes are misbehaving.