Visible to the public Biblio

Filters: Keyword is infrared detectors  [Clear All Filters]
2020-07-30
Tina, Sonam, Harshit, Singla, Muskan.  2019.  Smart Lightning and Security System. 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). :1—6.

As Electric Power is one of the major concerns, so the concept of the automatic lighting and security system saves the electrical energy. By using the automatic lightning, the consumption of electrical power can be minimized to a greater extent and for that sensors and microcontrollers can be designed in such a manner such that lights get ON/OFF based on motion in a room. The various sensors used for sensing the motion in an area are PIR motion sensor, IR Motion Sensor. An IR sensor senses the heat of an object and detects its motion within some range as it emits infrared radiations and this complete process can be controlled by microcontroller. Along with that security system can be applied in this concept by programming the microcontroller in such a way that if there is some movement in an area then lights must get ON/OFF automatically or any alarm must start. This chapter proposes the framework for the smart lightning with security systems in a building so that electrical power can be utilized efficiently and secures the building.

2019-09-23
Wang, Y., Sun, C., Kuan, P., Lu, C., Wang, H..  2018.  Secured graphic QR code with infrared watermark. 2018 IEEE International Conference on Applied System Invention (ICASI). :690–693.

The barcode is an important link between real life and the virtual world nowadays. One of the most common barcodes is QR code, which its appearance, black and white modules, is not visually pleasing. The QR code is applied to product packaging and campaign promotion in the market. There are more and more stores using QR code for transaction payment. If the QR code is altered or illegally duplicated, it will endanger the information security of users. Therefore, the study uses infrared watermarking to embed the infrared QR code information into the explicit QR code to strengthen the anti-counterfeiting features. The explicit graphic QR code is produced by data hiding with error diffusion in this study. With the optical characteristics of K, one of the four printed ink colors CMYK (Cyan, Magenta, Yellow, Black), only K can be rendered in infrared. Hence, we use the infrared watermarking to embed the implicit QR code information into the explicit graphic QR code. General QR code reader may be used to interpret explicit graphic QR code information. As for implicit QR code, it needs the infrared detector to extract its implicit QR code information. If the QR code is illegally copied, it will not show the hidden second QR code under infrared detection. In this study, infrared watermark hidden in the graphic QR code can enhance not only the aesthetics of QR code, but also the anti-counterfeiting feature. It can also be applied to printing related fields, such as security documents, banknotes, etc. in the future.

2019-01-21
Zhao, J., Kong, K., Hei, X., Tu, Y., Du, X..  2018.  A Visible Light Channel Based Access Control Scheme for Wireless Insulin Pump Systems. 2018 IEEE International Conference on Communications (ICC). :1–6.
Smart personal insulin pumps have been widely adopted by type 1 diabetes. However, many wireless insulin pump systems lack security mechanisms to protect them from malicious attacks. In previous works, the read-write attacks over RF channels can be launched stealthily and could jeopardize patients' lives. Protecting patients from such attacks is urgent. To address this issue, we propose a novel visible light channel based access control scheme for wireless infusion insulin pumps. This scheme employs an infrared photodiode sensor as a receiver in an insulin pump, and an infrared LED as an emitter in a doctor's reader (USB) to transmit a PIN/shared key to authenticate the doctor's USB. The evaluation results demonstrate that our scheme can reliably pass the authentication process with a low false accept rate (0.05% at a distance of 5cm).
2018-07-18
Smith, E., Fuller, L..  2017.  Control systems and the internet of things \#x2014; Shrinking the factory. 2017 56th FITCE Congress. :68–73.

In this paper we discuss the Internet of Things (IoT) by exploring aspects which go beyond the proliferation of devices and information enabled by: the growth of the Internet, increased miniaturization, prolonged battery life and an IT literate user base. We highlight the role of feedback mechanisms and illustrate this with reference to implemented computer enabled factory control systems. As the technology has developed, the cost of computing has reduced drastically, programming interfaces have improved, sensors are simpler and more cost effective and high performance communications across a wide area are readily available. We illustrate this by considering an application based on the Raspberry Pi, which is a low cost, small, programmable and network capable computer based on a powerful ARM processor with a programmable I/O interface, which can provide access to sensors (and other devices). The prototype application running on this platform can sense the presence of human being, using inexpensive passive infrared detectors. This can be used to monitor the activity of vulnerable adults, logging the results to a central server using a domestic Internet solution over a Wireless LAN. Whilst this demonstrates the potential for the use of such control/monitoring systems, practical systems spanning thousands of sites will be more complex to deliver and will have more stringent data processing and management demands and security requirements. We will discuss these concepts in the context of delivery of a smart interconnected society.

2017-12-20
Alheeti, K. M. A., McDonald-Maier, K..  2017.  An intelligent security system for autonomous cars based on infrared sensors. 2017 23rd International Conference on Automation and Computing (ICAC). :1–5.
Safety and non-safety applications in the external communication systems of self-driving vehicles require authentication of control data, cooperative awareness messages and notification messages. Traditional security systems can prevent attackers from hacking or breaking important system functionality in autonomous vehicles. This paper presents a novel security system designed to protect vehicular ad hoc networks in self-driving and semi-autonomous vehicles that is based on Integrated Circuit Metric technology (ICMetrics). ICMetrics has the ability to secure communication systems in autonomous vehicles using features of the autonomous vehicle system itself. This security system is based on unique extracted features from vehicles behaviour and its sensors. Specifically, features have been extracted from bias values of infrared sensors which are used alongside semantically extracted information from a trace file of a simulated vehicular ad hoc network. The practical experimental implementation and evaluation of this system demonstrates the efficiency in identifying of abnormal/malicious behaviour typical for an attack.