Biblio
As Electric Power is one of the major concerns, so the concept of the automatic lighting and security system saves the electrical energy. By using the automatic lightning, the consumption of electrical power can be minimized to a greater extent and for that sensors and microcontrollers can be designed in such a manner such that lights get ON/OFF based on motion in a room. The various sensors used for sensing the motion in an area are PIR motion sensor, IR Motion Sensor. An IR sensor senses the heat of an object and detects its motion within some range as it emits infrared radiations and this complete process can be controlled by microcontroller. Along with that security system can be applied in this concept by programming the microcontroller in such a way that if there is some movement in an area then lights must get ON/OFF automatically or any alarm must start. This chapter proposes the framework for the smart lightning with security systems in a building so that electrical power can be utilized efficiently and secures the building.
The barcode is an important link between real life and the virtual world nowadays. One of the most common barcodes is QR code, which its appearance, black and white modules, is not visually pleasing. The QR code is applied to product packaging and campaign promotion in the market. There are more and more stores using QR code for transaction payment. If the QR code is altered or illegally duplicated, it will endanger the information security of users. Therefore, the study uses infrared watermarking to embed the infrared QR code information into the explicit QR code to strengthen the anti-counterfeiting features. The explicit graphic QR code is produced by data hiding with error diffusion in this study. With the optical characteristics of K, one of the four printed ink colors CMYK (Cyan, Magenta, Yellow, Black), only K can be rendered in infrared. Hence, we use the infrared watermarking to embed the implicit QR code information into the explicit graphic QR code. General QR code reader may be used to interpret explicit graphic QR code information. As for implicit QR code, it needs the infrared detector to extract its implicit QR code information. If the QR code is illegally copied, it will not show the hidden second QR code under infrared detection. In this study, infrared watermark hidden in the graphic QR code can enhance not only the aesthetics of QR code, but also the anti-counterfeiting feature. It can also be applied to printing related fields, such as security documents, banknotes, etc. in the future.
In this paper we discuss the Internet of Things (IoT) by exploring aspects which go beyond the proliferation of devices and information enabled by: the growth of the Internet, increased miniaturization, prolonged battery life and an IT literate user base. We highlight the role of feedback mechanisms and illustrate this with reference to implemented computer enabled factory control systems. As the technology has developed, the cost of computing has reduced drastically, programming interfaces have improved, sensors are simpler and more cost effective and high performance communications across a wide area are readily available. We illustrate this by considering an application based on the Raspberry Pi, which is a low cost, small, programmable and network capable computer based on a powerful ARM processor with a programmable I/O interface, which can provide access to sensors (and other devices). The prototype application running on this platform can sense the presence of human being, using inexpensive passive infrared detectors. This can be used to monitor the activity of vulnerable adults, logging the results to a central server using a domestic Internet solution over a Wireless LAN. Whilst this demonstrates the potential for the use of such control/monitoring systems, practical systems spanning thousands of sites will be more complex to deliver and will have more stringent data processing and management demands and security requirements. We will discuss these concepts in the context of delivery of a smart interconnected society.