Biblio
To ensure security, Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is widely used in people's online lives. This paper presents a Chinese character captcha sequential selection system based on convolutional neural network (CNN). Captchas composed of English and digits can already be identified with extremely high accuracy, but Chinese character captcha recognition is still challenging. The task we need to complete is to identify Chinese characters with different colors and different fonts that are not on a straight line with rotation and affine transformation on pictures with complex backgrounds, and then perform word order restoration on the identified Chinese characters. We divide the task into several sub-processes: Chinese character detection based on Faster R-CNN, Chinese character recognition and word order recovery based on N-Gram. In the Chinese character recognition sub-process, we have made outstanding contributions. We constructed a single Chinese character data set and built a 10-layer convolutional neural network. Eventually we achieved an accuracy of 98.43%, and completed the task perfectly.
Once we had tried to propose an unbreakable CAPTCHA and we reached a result that limitation of time is effect to prevent computers from recognizing characters accurately while computers can finally recognize all text-based CAPTCHA in unlimited time. One of the existing usual ways to prevent computers from recognizing characters is distortion, and adding noise is also effective for the prevention. However, these kinds of prevention also make recognition of characters by human beings difficult. As a solution of the problems, an effective text-based CAPTCHA algorithm with amodal completion was proposed by our team. Our CAPTCHA causes computers a large amount of calculation costs while amodal completion helps human beings to recognize characters momentarily. Our CAPTCHA has evolved with aftereffects and combinations of complementary colors. We evaluated our CAPTCHA with deep learning which is attracting the most attention since deep learning is faster and more accurate than existing methods for recognition with computers. In this paper, we add jagged lines to edges of characters since edges are one of the most important parts for recognition in deep learning. In this paper, we also evaluate that how much the jagged lines decrease recognition of human beings and how much they prevent computers from the recognition. We confirm the effects of our method to deep learning.