Visible to the public Biblio

Filters: Keyword is data structure  [Clear All Filters]
2022-05-23
Hu, Yuan, Wan, Long.  2021.  Construction of immersive architectural wisdom guiding environment based on virtual reality. 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI). :1464–1467.
Construction of immersive architectural wisdom guiding environment based on virtual reality is studied in this paper. Emerging development of the computer smart systems have provided the engineers a novel solution for the platform construction. Network virtualization is currently the most unclear and controversial concept in the industry regarding the definition of virtualization subdivisions. To improve the current study, we use the VR system to implement the platform. The wisdom guiding environment is built through the virtual data modelling and the interactive connections. The platform is implemented through the software. The test on the data analysis accuracy and the interface optimization is conducted.
2021-02-22
Lei, X., Tu, G.-H., Liu, A. X., Xie, T..  2020.  Fast and Secure kNN Query Processing in Cloud Computing. 2020 IEEE Conference on Communications and Network Security (CNS). :1–9.
Advances in sensing and tracking technology lead to the proliferation of location-based services. Location service providers (LSPs) often resort to commercial public clouds to store the tremendous geospatial data and process location-based queries from data users. To protect the privacy of LSP's geospatial data and data user's query location against the untrusted cloud, they are required to be encrypted before sending to the cloud. Nevertheless, it is not easy to design a fast and secure location-based query processing scheme over the encrypted data. In this paper, we propose a Fast and Secure kNN (FSkNN) scheme to support secure k nearest neighbor (k NN) search in cloud computing. We reveal the inherent connection between an Sk NN protocol and a secure range query protocol and further describe how to construct FSkNN based on a secure range query protocol. FSkNN leverages a customized accuracy-assured strategy to ensure the result accuracy and adopts a data structure named random Bloom filter (RBF) to build a secure index for efficiently searching. We formally prove the security of FSkNN under the random oracle model. Our evaluation results show that FSkNN is highly practical.
2020-12-11
Zhang, W., Byna, S., Niu, C., Chen, Y..  2019.  Exploring Metadata Search Essentials for Scientific Data Management. 2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC). :83—92.

Scientific experiments and observations store massive amounts of data in various scientific file formats. Metadata, which describes the characteristics of the data, is commonly used to sift through massive datasets in order to locate data of interest to scientists. Several indexing data structures (such as hash tables, trie, self-balancing search trees, sparse array, etc.) have been developed as part of efforts to provide an efficient method for locating target data. However, efficient determination of an indexing data structure remains unclear in the context of scientific data management, due to the lack of investigation on metadata, metadata queries, and corresponding data structures. In this study, we perform a systematic study of the metadata search essentials in the context of scientific data management. We study a real-world astronomy observation dataset and explore the characteristics of the metadata in the dataset. We also study possible metadata queries based on the discovery of the metadata characteristics and evaluate different data structures for various types of metadata attributes. Our evaluation on real-world dataset suggests that trie is a suitable data structure when prefix/suffix query is required, otherwise hash table should be used. We conclude our study with a summary of our findings. These findings provide a guideline and offers insights in developing metadata indexing methodologies for scientific applications.

2019-10-23
Chen, Jing, Yao, Shixiong, Yuan, Quan, He, Kun, Ji, Shouling, Du, Ruiying.  2018.  CertChain: Public and Efficient Certificate Audit Based on Blockchain for TLS Connections. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :2060-2068.

In recent years, real-world attacks against PKI take place frequently. For example, malicious domains' certificates issued by compromised CAs are widespread, and revoked certificates are still trusted by clients. In spite of a lot of research to improve the security of SSL/TLS connections, there are still some problems unsolved. On one hand, although log-based schemes provided certificate audit service to quickly detect CAs' misbehavior, the security and data consistency of log servers are ignored. On the other hand, revoked certificates checking is neglected due to the incomplete, insecure and inefficient certificate revocation mechanisms. Further, existing revoked certificates checking schemes are centralized which would bring safety bottlenecks. In this paper, we propose a blockchain-based public and efficient audit scheme for TLS connections, which is called Certchain. Specially, we propose a dependability-rank based consensus protocol in our blockchain system and a new data structure to support certificate forward traceability. Furthermore, we present a method that utilizes dual counting bloom filter (DCBF) with eliminating false positives to achieve economic space and efficient query for certificate revocation checking. The security analysis and experimental results demonstrate that CertChain is suitable in practice with moderate overhead.

2018-08-23
Ning, F., Wen, Y., Shi, G., Meng, D..  2017.  Efficient tamper-evident logging of distributed systems via concurrent authenticated tree. 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC). :1–9.
Secure logging as an indispensable part of any secure system in practice is well-understood by both academia and industry. However, providing security for audit logs on an untrusted machine in a large distributed system is still a challenging task. The emergence and wide availability of log management tools prompted plenty of work in the security community that allows clients or auditors to verify integrity of the log data. Most recent solutions to this problem focus on the space-efficiency or public verifiability of forward security. Unfortunately, existing secure audit logging schemes have significant performance limitations that make them impractical for realtime large-scale distributed applications: Existing cryptographic hashing is computationally expensive for logging in task intensive or resource-constrained systems especially to prove individual log events, while Merkle-tree approach has fundamental limitations when face with highly concurrent, large-scale log streams due to its serially appending feature. The verification step of Merkle-tree based approach requiring a logarithmic number of hash computations is becoming a bottleneck to improve the overall performance. There is a huge gap between the flux of log streams collected and the computational efficiency of integrity verification in the large-scale distributed systems. In this work, we develop a novel scheme, performance of which favorably compares with the existing solutions. The performance guarantees that we achieve stem from a novel data structure called concurrent authenticated tree, which allows log events concurrently appending and removes the need to wait for append operations to complete sequentially. We implement a prototype using chameleon hashing based on discrete log and Merkle history tree. A comprehensive experimental evaluation of the proposed and existing approaches is used to validate the analytical models and verify our claims. The results demonstrate that our proposed scheme verifying in a concurrent way is significantly more efficient than the previous tree-based approach.
2017-12-20
Gayathri, S..  2017.  Phishing websites classifier using polynomial neural networks in genetic algorithm. 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN). :1–4.

Genetic Algorithms are group of mathematical models in computational science by exciting evolution in AI techniques nowadays. These algorithms preserve critical information by applying data structure with simple chromosome recombination operators by encoding solution to a specific problem. Genetic algorithms they are optimizer, in which range of problems applied to it are quite broad. Genetic Algorithms with its global search includes basic principles like selection, crossover and mutation. Data structures, algorithms and human brain inspiration are found for classification of data and for learning which works using Neural Networks. Artificial Intelligence (AI) it is a field, where so many tasks performed naturally by a human. When AI conventional methods are used in a computer it was proved as a complicated task. Applying Neural Networks techniques will create an internal structure of rules by which a program can learn by examples, to classify different inputs than mining techniques. This paper proposes a phishing websites classifier using improved polynomial neural networks in genetic algorithm.