Visible to the public Biblio

Filters: Keyword is Magnetic cores  [Clear All Filters]
2023-05-12
Reid, R., Smith, J. R..  2022.  Revisiting Centrifugal Confinement for high Temperature Plasmas. 2022 IEEE International Conference on Plasma Science (ICOPS). :1–2.
Traditional magnetic mirrors are appealing because of their comparably simple geometry which lends itself to cost-effective construction. However, magnetic mirrors suffer from several inherent problems that make them poor choices for confining and heating plasmas. The chief concerns are the loss-cone instability which continuously saps hot particles from the trap and the interchange instability which effectively transports hot plasma from the core of the trap to the edges where it is lost to the walls. Centrifugal confinement schemes address these concerns with the addition of supersonic poloidal rotation which can effectively shut off the loss-cone. In addition, velocity shear in the flow may mitigate or even turn off the interchange instability if high enough rotation speeds can be achieved. Previous experiments have verified the efficacy of centrifugal confinement but have been unable to achieve sufficient rotation velocities to entirely shut down the interchange modes. [1] The rotation velocity in these experiments was limited by the Critical-Ionization-Velocity (CIV) instability. [3] We plan an experiment to verify that the CIV is the limiting factor in supersonic plasma centrifuges and to explore strategies for avoiding the CIV limit and achieving sufficient rotation speeds to enable stable plasma confinement.
ISSN: 2576-7208
2023-03-17
Webb, Susan J., Knight, Jasper, Grab, Stefan, Enslin, Stephanie, Hunt, Hugh, Maré, Leonie.  2022.  Magnetic evidence for lightning strikes on mountains in Lesotho as an important denudation agent. 2022 36th International Conference on Lightning Protection (ICLP). :500–503.
Contrary to previous opinion, ‘frost shattering’ is not the only major contributor to rock weathering at mid latitudes and high elevations, more specifically along edges of bedrock escarpments. Lightning is also a significant contributor to land surface denudation. We can show this as lightning strikes on outcrops can dramatically alter the magnetic signature of rocks and is one of the main sources of noise in paleomagnetic studies. Igneous rocks in the highlands of Lesotho, southern Africa (\textgreater 3000 m elevation) provide an ideal study location, as flow lavas remain as prominent ridges that are relatively resistant to weathering. It is well known that lightning strikes can cause large remanent magnetization in rocks with little resultant variation in susceptibility. At two adjoining peaks in the Lesotho highlands, mapped freshly fractured rock correlates with areas of high magnetic intensity (remanent component), but little variation in susceptibility (related to the induced field), and is therefore a clear indicator of lightning damage. The majority of these mapped strike sites occur at the edges of topographic highs. Variations in magnetic intensity are correlated with the much lower resolution national lightning strikes dataset. These data confirm that high elevation edges of peak scarps are the focus of previous lightning strikes. This method of magnetic surveying compared with lightning strike data is a new method of confirming the locations of lightning strikes, and reduces the need for intensive paleomagnetic studies of the area to confirm remanence.
2023-01-20
An, Guowei, Han, Congzheng, Zhang, Fugui, Liu, Kun.  2022.  Research on Electromagnetic Energy Harvesting Technology for Smart Grid Application. 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). :441—443.
The electromagnetic energy harvesting technology is a new and effective way to supply power to the condition monitoring sensors installed on or near the transmission line. We will use Computer Simulation Technology Software to simulate the different designs of stand-alone electromagnetic energy harvesters The power generated by energy harvesters of different design structures is compared and analyzed through simulation and experimental results. We then propose an improved design of energy harvester.
2021-09-21
Azhari, Budi, Yazid, Edwar, Devi, Merry Indahsari.  2020.  Dynamic Inductance Simulation of a Linear Permanent Magnet Generator Under Different Magnet Configurations. 2020 International Conference on Sustainable Energy Engineering and Application (ICSEEA). :1–8.
Recently, some innovations have been applied to the linear permanent magnet generator (LPMG). They are including the introduction of high-remanence rare-earth magnets and the use of different magnet configurations. However, these actions also affect the flow and distribution of the magnetic flux. Under the load condition, the load current will also generate reverse flux. The flux resultant then affects the coil parameters; the significant one is the coil inductance. Since it is influential to the output voltage and output power profiles, the impact study of the permanent magnet settings under load condition is essential. Hence this paper presents the inductance profile study of the LMPG with different magnet configurations. After presenting the initial designs, several magnet settings including the material and configuration were varied. Finite element magnetic simulation and analytical calculations were then performed to obtain the inductance profile of the LPMG. The results show that the inductance value varies with change in load current and magnet position. The different magnet materials (SmCo 30 and N35) do not significantly affect the inductance. Meanwhile, different magnet configuration (radial, axial, halbach) results in different inductance trends.
2020-11-30
Chen, Z., Bai, B., Chen, D., Chai, W..  2018.  Design of Distribution Devices for Smart Grid Based on Magnetically Tunable Nanocomposite. IEEE Transactions on Power Electronics. 33:2083–2099.
This paper designs three distribution devices for the smart grid, which are, respectively, novel transformer with dc bias restraining ability, energy-saving contactor, and controllable reactor with adjustable intrinsic magnetic state based on the magnetically tunable nanocomposite material core. First, the magnetic performance of this magnetic material was analyzed and the magnetic properties processing method was put forward. One kind of nanocomposite which is close to the semihard magnetic state with low coercivity and high remanence was attained. Nanocomposite with four magnetic properties was processed and prepared using the distribution devices design. Second, in order to adjust the magnetic state better, the magnetization and demagnetization control circuit based on the single-phase supply power of rectification and inverter for the nanocomposite magnetic performance adjustment has been designed, which can mutual transform the material's soft and hard magnetic phases. Finally, based on the nanocomposite and the control circuit, a novel power transformer, an energy-saving contactor, and a magnetically controllable reactor were manufactured for the smart grid. The maintained remanence of the nanocomposite core after the magnetization could neutralize the dc bias magnetic flux in the transformer main core without changing the transformer neutral point connection mode, could pull in the contactor movable core instead of the traditional electromagnetic-type fixed core, and could adjust the reactor core saturation degree instead of the traditional electromagnetic coil. The simulation and experimental results verify the correctness of the design, which provides reliable, intelligent, interactive, and energy-saving power equipment for the smart power grids safe operation.
2020-02-24
Altun, Hüseyin, Sünter, Sedat, Aydoğmuş, Ömür.  2019.  Modeling and Simulation of Magnetizing Inrush Current in A Single-Phase Transformer. 2019 4th International Conference on Power Electronics and their Applications (ICPEA). :1–6.
In this paper, a transformer model has been developed. The model is based on the equivalent electrical circuit used in transient simulation studies which considers the non-linearity of the iron core. The non-linear ferromagnetic behavior of the iron core was obtained by using the Jiles-Atherton hysteresis model. The magnetizing inrush current of a core type single-phase transformer was analyzed under four different energization conditions. The primary winding of the transformer was connected to the supply at various instants while there was either some level of remanent flux or no remanent flux in the iron core. Corresponding simulation results are presented and discussed.
Li, Baiqiang, Ma, Shaohua, Cai, Zhiyuan, Zheng, Yahong.  2019.  A Novel Method for Calculating Residual Magnetic Flux of DC Contactors. 2019 5th International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST). :535–538.
Reliable calculation model of electromagnetic mechanism characteristics of DC contactor is of great significance to its structural optimization. In this paper, the excitation process of contactor magnet is summarized, and a new calculation model of hysteresis-finite element method is proposed. It can effectively calculate the remanence of the electromagnetic mechanism under different excitation conditions, and give the relationship curve between the remanence flux and the anti-remanence gap.
Kanokbannakorn, W., Penthong, T..  2019.  Improvement of a Current Transformer Model based on the Jiles-Atherton Theory. 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia). :495–499.
An improved current transformer model (CT) developed in DIgSILENT™ is presented in this paper. The hysteresis characteristics of magnetic material described by Jiles-Atheron theory are included. The results show that model can represent the saturation and remanence characteristics of CT core accurately. The model accuracy is verified by comparing the simulation results with PSCAD/EMTDC™.
2019-09-30
Liu, Y., Li, L., Gao, Q., Cao, J., Wang, R., Sun, Z..  2019.  Analytical Model of Torque-Prediction for a Novel Hybrid Rotor Permanent Magnet Machines. IEEE Access. 7:109528–109538.

This paper presents an analytical method for predicting the electromagnetic performance in permanent magnet (PM) machine with the spoke-type rotor (STR) and a proposed hybrid rotor structure (HRS), respectively. The key of this method is to combine magnetic field analysis model (MFAM) with the magnetic equivalent circuit model. The influence of the irregular PM shape is considered by the segmentation calculation. To obtain the boundary condition in the MFAM, respectively, two equivalent methods on the rotor side are proposed. In the STR, the average flux density of the rotor core outer-surface is calculated to solve the Laplace's equation with considering for the rotor core outer-surface eccentric. In the HRS, based on the Thevenin's theorem, the equivalent parameters of PM remanence BreB and thickness hpme are obtained as a given condition, which can be utilized to compute the air-gap flux density by conventional classic magnetic field analysis model of surface-mounted PMs with air-gap region. Finally, the proposed analytical models are verified by the finite element analysis (FEA) with comparisons of the air-gap flux density, flux linkage, back-EMF and electromagnetic torque, respectively. Furthermore, the performance that the machine with the proposed hybrid structure rotor can improve the torque density as explained.

2018-05-16
Liren, Z., Xin, Y., Yang, P., Li, Z..  2017.  Magnetic performance measurement and mathematical model establishment of main core of magnetic modulator. 2017 13th IEEE International Conference on Electronic Measurement Instruments (ICEMI). :12–16.

In order to investigate the relationship and effect on the performance of magnetic modulator among applied DC current, excitation source, excitation loop current, sensitivity and induced voltage of detecting winding, this paper measured initial permeability, maximum permeability, saturation magnetic induction intensity, remanent magnetic induction intensity, coercivity, saturated magnetic field intensity, magnetization curve, permeability curve and hysteresis loop of main core 1J85 permalloy of magnetic modulator based on ballistic method. On this foundation, employ curve fitting tool of MATLAB; adopt multiple regression method to comprehensively compare and analyze the sum of squares due to error (SSE), coefficient of determination (R-square), degree-of-freedom adjusted coefficient of determination (Adjusted R-square), and root mean squared error (RMSE) of fitting results. Finally, establish B-H curve mathematical model based on the sum of arc-hyperbolic sine function and polynomial.

2017-12-20
Chang, L., Kao, M., Tsai, L., Liang, J., Lee, S..  2017.  Frequency modulation spin waves generator via oscillating vortex core in NiFe disk array. 2017 IEEE International Magnetics Conference (INTERMAG). :1–1.

The study of spin waves (SW) excitation in magnetic devices is one of the most important topics in modern magnetism due to the applications of the information carrier and the signal processing. We experimentally realize a spin-wave generator, capable of frequency modulation, in a magnonic waveguide. The emission of spin waves was produced by the reversal or oscillation of nanoscale magnetic vortex cores in a NiFe disk array. The vortex cores in the disk array were excited by an out of plane radio frequency (rf) magnetic field. The dynamic behaviors of the magnetization of NiFe were studied using a micro-focused Brillouin light scattering spectroscopy (BLS) setup.