Visible to the public Biblio

Filters: Keyword is large-scale data analytics  [Clear All Filters]
2020-12-07
Islam, M. S., Verma, H., Khan, L., Kantarcioglu, M..  2019.  Secure Real-Time Heterogeneous IoT Data Management System. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :228–235.
The growing adoption of IoT devices in our daily life engendered a need for secure systems to safely store and analyze sensitive data as well as the real-time data processing system to be as fast as possible. The cloud services used to store and process sensitive data are often come out to be vulnerable to outside threats. Furthermore, to analyze streaming IoT data swiftly, they are in need of a fast and efficient system. The Paper will envision the aspects of complexity dealing with real time data from various devices in parallel, building solution to ingest data from different IOT devices, forming a secure platform to process data in a short time, and using various techniques of IOT edge computing to provide meaningful intuitive results to users. The paper envisions two modules of building a real time data analytics system. In the first module, we propose to maintain confidentiality and integrity of IoT data, which is of paramount importance, and manage large-scale data analytics with real-time data collection from various IoT devices in parallel. We envision a framework to preserve data privacy utilizing Trusted Execution Environment (TEE) such as Intel SGX, end-to-end data encryption mechanism, and strong access control policies. Moreover, we design a generic framework to simplify the process of collecting and storing heterogeneous data coming from diverse IoT devices. In the second module, we envision a drone-based data processing system in real-time using edge computing and on-device computing. As, we know the use of drones is growing rapidly across many application domains including real-time monitoring, remote sensing, search and rescue, delivery of goods, security and surveillance, civil infrastructure inspection etc. This paper demonstrates the potential drone applications and their challenges discussing current research trends and provide future insights for potential use cases using edge and on-device computing.
2020-11-30
Cheng, D., Zhou, X., Ding, Z., Wang, Y., Ji, M..  2019.  Heterogeneity Aware Workload Management in Distributed Sustainable Datacenters. IEEE Transactions on Parallel and Distributed Systems. 30:375–387.
The tremendous growth of cloud computing and large-scale data analytics highlight the importance of reducing datacenter power consumption and environmental impact of brown energy. While many Internet service operators have at least partially powered their datacenters by green energy, it is challenging to effectively utilize green energy due to the intermittency of renewable sources, such as solar or wind. We find that the geographical diversity of internet-scale services can be carefully scheduled to improve the efficiency of applying green energy in datacenters. In this paper, we propose a holistic heterogeneity-aware cloud workload management approach, sCloud, that aims to maximize the system goodput in distributed self-sustainable datacenters. sCloud adaptively places the transactional workload to distributed datacenters, allocates the available resource to heterogeneous workloads in each datacenter, and migrates batch jobs across datacenters, while taking into account the green power availability and QoS requirements. We formulate the transactional workload placement as a constrained optimization problem that can be solved by nonlinear programming. Then, we propose a batch job migration algorithm to further improve the system goodput when the green power supply varies widely at different locations. Finally, we extend sCloud by integrating a flexible batch job manager to dynamically control the job execution progress without violating the deadlines. We have implemented sCloud in a university cloud testbed with real-world weather conditions and workload traces. Experimental results demonstrate sCloud can achieve near-to-optimal system performance while being resilient to dynamic power availability. sCloud with the flexible batch job management approach outperforms a heterogeneity-oblivious approach by 37 percent in improving system goodput and 33 percent in reducing QoS violations.
2017-12-28
Rolinger, T. B., Simon, T. A., Krieger, C. D..  2017.  Performance challenges for heterogeneous distributed tensor decompositions. 2017 IEEE High Performance Extreme Computing Conference (HPEC). :1–7.

Tensor decompositions, which are factorizations of multi-dimensional arrays, are becoming increasingly important in large-scale data analytics. A popular tensor decomposition algorithm is Canonical Decomposition/Parallel Factorization using alternating least squares fitting (CP-ALS). Tensors that model real-world applications are often very large and sparse, driving the need for high performance implementations of decomposition algorithms, such as CP-ALS, that can take advantage of many types of compute resources. In this work we present ReFacTo, a heterogeneous distributed tensor decomposition implementation based on DeFacTo, an existing distributed memory approach to CP-ALS. DFacTo reduces the critical routine of CP-ALS to a series of sparse matrix-vector multiplications (SpMVs). ReFacTo leverages GPUs within a cluster via MPI to perform these SpMVs and uses OpenMP threads to parallelize other routines. We evaluate the performance of ReFacTo when using NVIDIA's GPU-based cuSPARSE library and compare it to an alternative implementation that uses Intel's CPU-based Math Kernel Library (MKL) for the SpMV. Furthermore, we provide a discussion of the performance challenges of heterogeneous distributed tensor decompositions based on the results we observed. We find that on up to 32 nodes, the SpMV of ReFacTo when using MKL is up to 6.8× faster than ReFacTo when using cuSPARSE.