Biblio
Software Defined Networking (SDN) is the new promise towards an easily configured and remotely controlled network. Based on Centralized control, SDN technology has proved its positive impact on the world of network communications from different aspects. Security in SDN, as in traditional networks, is an essential feature that every communication system should possess. In this paper, we propose an SDN security design approach, which strikes a good balance between network performance and security features. We show how such an approach can be used to prevent DDoS attacks targeting either the controller or the different hosts in the network, and how to trace back the source of the attack. The solution lies in introducing a third plane, the security plane, in addition to the data plane, which is responsible for forwarding data packets between SDN switches, and parallel to the control plane, which is responsible for rule and data exchange between the switches and the SDN controller. The security plane is designed to exchange security-related data between a third party agent on the switch and a third party software module alongside the controller. Our evaluation shows the capability of the proposed system to enforce different levels of real-time user-defined security with low overhead and minimal configuration.
The evolution of information and communication technologies has brought new challenges in managing the Internet. Software-Defined Networking (SDN) aims to provide easily configured and remotely controlled networks based on centralized control. Since SDN will be the next disruption in networking, SDN security has become a hot research topic because of its importance in communication systems. A centralized controller can become a focal point of attack, thus preventing attack in controller will be a priority. The whole network will be affected if attacker gain access to the controller. One of the attacks that affect SDN controller is DDoS attacks. This paper reviews different detection techniques that are available to prevent DDoS attacks, characteristics of these techniques and issues that may arise using these techniques.
Software Defined Networks (SDNs) have gained prominence recently due to their flexible management and superior configuration functionality of the underlying network. SDNs, with OpenFlow as their primary implementation, allow for the use of a centralised controller to drive the decision making for all the supported devices in the network and manage traffic through routing table changes for incoming flows. In conventional networks, machine learning has been shown to detect malicious intrusion, and classify attacks such as DoS, user to root, and probe attacks. In this work, we extend the use of machine learning to improve traffic tolerance for SDNs. To achieve this, we extend the functionality of the controller to include a resilience framework, ReSDN, that incorporates machine learning to be able to distinguish DoS attacks, focussing on a neptune attack for our experiments. Our model is trained using the MIT KDD 1999 dataset. The system is developed as a module on top of the POX controller platform and evaluated using the Mininet simulator.