Biblio
The rapid rise of cyber-crime activities and the growing number of devices threatened by them place software security issues in the spotlight. As around 90% of all attacks exploit known types of security issues, finding vulnerable components and applying existing mitigation techniques is a viable practical approach for fighting against cyber-crime. In this paper, we investigate how the state-of-the-art machine learning techniques, including a popular deep learning algorithm, perform in predicting functions with possible security vulnerabilities in JavaScript programs. We applied 8 machine learning algorithms to build prediction models using a new dataset constructed for this research from the vulnerability information in public databases of the Node Security Project and the Snyk platform, and code fixing patches from GitHub. We used static source code metrics as predictors and an extensive grid-search algorithm to find the best performing models. We also examined the effect of various re-sampling strategies to handle the imbalanced nature of the dataset. The best performing algorithm was KNN, which created a model for the prediction of vulnerable functions with an F-measure of 0.76 (0.91 precision and 0.66 recall). Moreover, deep learning, tree and forest based classifiers, and SVM were competitive with F-measures over 0.70. Although the F-measures did not vary significantly with the re-sampling strategies, the distribution of precision and recall did change. No re-sampling seemed to produce models preferring high precision, while re-sampling strategies balanced the IR measures.
A mobile ad hoc network is a type of ad hoc network in which node changes it locations and configures them. It uses wireless medium to communicate with other networks. It also does not possess centralized authority and each node has the ability to perform some tasks. Nodes in this type of network has a routing table depending on which it finds the optimal way to send packets in forward direction but link failure should be updated in node table to encompass that. In civilian environment like meeting rooms, cab networking etc, in military search and rescue operations it has huge application.
Secure by design is an approach to developing secure software systems from the ground up. In such approach, the alternate security tactics are first thought, among them, the best are selected and enforced by the architecture design, and then used as guiding principles for developers. Thus, design flaws in the architecture of a software system mean that successful attacks could result in enormous consequences. Therefore, secure by design shifts the main focus of software assurance from finding security bugs to identifying architectural flaws in the design. Current research in software security has been neglecting vulnerabilities which are caused by flaws in a software architecture design and/or deteriorations of the implementation of the architectural decisions. In this paper, we present the concept of Common Architectural Weakness Enumeration (CAWE), a catalog which enumerates common types of vulnerabilities rooted in the architecture of a software and provides mitigation techniques to address them. The CAWE catalog organizes the architectural flaws according to known security tactics. We developed an interactive web-based solution which helps designers and developers explore this catalog based on architectural choices made in their project. CAWE catalog contains 224 weaknesses related to security architecture. Through this catalog, we aim to promote the awareness of security architectural flaws and stimulate the security design thinking of developers, software engineers, and architects.
Attacks on airport information network services in the form of Denial of Service (DoS), Distributed DoS (DDoS), and hijacking are the most effective schemes mostly explored by cyber terrorists in the aviation industry running Mission Critical Services (MCSs). This work presents a case for Airport Information Resource Management Systems (AIRMS) which is a cloud based platform proposed for the Nigerian aviation industry. Granting that AIRMS is susceptible to DoS attacks, there is need to develop a robust counter security network model aimed at pre-empting such attacks and subsequently mitigating the vulnerability in such networks. Existing works in literature regarding cyber security DoS and other schemes have not explored embedded Stateful Packet Inspection (SPI) based on OpenFlow Application Centric Infrastructure (OACI) for securing critical network assets. As such, SPI-OACI was proposed to address the challenge of Vulnerability Bandwidth Depletion DDoS Attacks (VBDDA). A characterization of the Cisco 9000 router firewall as an embedded network device with support for Virtual DDoS protection was carried out in the AIRMS threat mitigation design. Afterwards, the mitigation procedure and the initial phase of the design with Riverbed modeler software were realized. For the security Quality of Service (QoS) profiling, the system response metrics (i.e. SPI-OACI delay, throughput and utilization) in cloud based network were analyzed only for normal traffic flows. The work concludes by offering practical suggestion for securing similar enterprise management systems running on cloud infrastructure against cyber terrorists.
During the last years, criminals have become aware of how digital evidences that lead them to courts and jail are collected and analyzed. Hence, they have started to develop antiforensic techniques to evade, hamper, or nullify their evidences. Nowadays, these techniques are broadly used by criminals, causing the forensic analysis to be in a state of decay. To defeat against these techniques, forensic analyst need to first identify them, and then to mitigate somehow their effects. In this paper, wereview the anti-forensic techniques and propose a new taxonomy that relates them to the initial phase of a forensic process mainly affected by each technique. Furthermore, we introduce mitigation techniques for these anti-forensic techniques, considering the chance to overcome the anti-forensic techniques and the difficulty to apply them.
IP spoofing based DDoS attack that relies on multiple compromised hosts in the network to attack the victim. In IP spoofing, IP addresses can be forged easily, thus, makes it difficult to filter illegitimate packets from legitimate one out of aggregated traffic. A number of mitigation techniques have been proposed in the literature by various researchers. The conventional Hop Count Filtering or probabilistic Hop Count Filtering based research work indicates the problems related to higher computational time and low detection rate of illegitimate packets. In this paper, DPHCF-RTT technique has been implemented and analysed for variable number of hops. Goal is to improve the limitations of Conventional HCF or Probabilistic HCF techniques by maximizing the detection rate of illegitimate packets and reducing the computation time. It is based on distributed probabilistic HCF using RTT. It has been used in an intermediate system. It has the advantage for resolving the problems of network bandwidth jam and host resources exhaustion. MATLAB 7 has been used for simulations. Mitigation of DDoS attacks have been done through DPHCF-RTT technique. It has been shown a maximum detection rate up to 99% of malicious packets.