Visible to the public Biblio

Filters: Keyword is Probabilistic logic  [Clear All Filters]
2017-12-12
Kimmig, A., Memory, A., Miller, R. J., Getoor, L..  2017.  A Collective, Probabilistic Approach to Schema Mapping. 2017 IEEE 33rd International Conference on Data Engineering (ICDE). :921–932.

We propose a probabilistic approach to the problem of schema mapping. Our approach is declarative, scalable, and extensible. It builds upon recent results in both schema mapping and probabilistic reasoning and contributes novel techniques in both fields. We introduce the problem of mapping selection, that is, choosing the best mapping from a space of potential mappings, given both metadata constraints and a data example. As selection has to reason holistically about the inputs and the dependencies between the chosen mappings, we define a new schema mapping optimization problem which captures interactions between mappings. We then introduce Collective Mapping Discovery (CMD), our solution to this problem using stateof- the-art probabilistic reasoning techniques, which allows for inconsistencies and incompleteness. Using hundreds of realistic integration scenarios, we demonstrate that the accuracy of CMD is more than 33% above that of metadata-only approaches already for small data examples, and that CMD routinely finds perfect mappings even if a quarter of the data is inconsistent.

2017-03-08
Boykov, Y., Isack, H., Olsson, C., Ayed, I. B..  2015.  Volumetric Bias in Segmentation and Reconstruction: Secrets and Solutions. 2015 IEEE International Conference on Computer Vision (ICCV). :1769–1777.

Many standard optimization methods for segmentation and reconstruction compute ML model estimates for appearance or geometry of segments, e.g. Zhu-Yuille [23], Torr [20], Chan-Vese [6], GrabCut [18], Delong et al. [8]. We observe that the standard likelihood term in these formu-lations corresponds to a generalized probabilistic K-means energy. In learning it is well known that this energy has a strong bias to clusters of equal size [11], which we express as a penalty for KL divergence from a uniform distribution of cardinalities. However, this volumetric bias has been mostly ignored in computer vision. We demonstrate signif- icant artifacts in standard segmentation and reconstruction methods due to this bias. Moreover, we propose binary and multi-label optimization techniques that either (a) remove this bias or (b) replace it by a KL divergence term for any given target volume distribution. Our general ideas apply to continuous or discrete energy formulations in segmenta- tion, stereo, and other reconstruction problems.

2017-03-07
Aggarwal, P., Maqbool, Z., Grover, A., Pammi, V. S. C., Singh, S., Dutt, V..  2015.  Cyber security: A game-theoretic analysis of defender and attacker strategies in defacing-website games. 2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–8.

The rate at which cyber-attacks are increasing globally portrays a terrifying picture upfront. The main dynamics of such attacks could be studied in terms of the actions of attackers and defenders in a cyber-security game. However currently little research has taken place to study such interactions. In this paper we use behavioral game theory and try to investigate the role of certain actions taken by attackers and defenders in a simulated cyber-attack scenario of defacing a website. We choose a Reinforcement Learning (RL) model to represent a simulated attacker and a defender in a 2×4 cyber-security game where each of the 2 players could take up to 4 actions. A pair of model participants were computationally simulated across 1000 simulations where each pair played at most 30 rounds in the game. The goal of the attacker was to deface the website and the goal of the defender was to prevent the attacker from doing so. Our results show that the actions taken by both the attackers and defenders are a function of attention paid by these roles to their recently obtained outcomes. It was observed that if attacker pays more attention to recent outcomes then he is more likely to perform attack actions. We discuss the implication of our results on the evolution of dynamics between attackers and defenders in cyber-security games.

2017-02-27
Gonzalez-Longatt, F., Carmona-Delgado, C., Riquelme, J., Burgos, M., Rueda, J. L..  2015.  Risk-based DC security assessment for future DC-independent system operator. 2015 International Conference on Energy Economics and Environment (ICEEE). :1–8.

The use of multi-terminal HVDC to integrate wind power coming from the North Sea opens de door for a new transmission system model, the DC-Independent System Operator (DC-ISO). DC-ISO will face highly stressed and varying conditions that requires new risk assessment tools to ensure security of supply. This paper proposes a novel risk-based static security assessment methodology named risk-based DC security assessment (RB-DCSA). It combines a probabilistic approach to include uncertainties and a fuzzy inference system to quantify the systemic and individual component risk associated with operational scenarios considering uncertainties. The proposed methodology is illustrated using a multi-terminal HVDC system where the variability of wind speed at the offshore wind is included.

2015-05-06
Carter, K.M., Idika, N., Streilein, W.W..  2014.  Probabilistic Threat Propagation for Network Security. Information Forensics and Security, IEEE Transactions on. 9:1394-1405.

Techniques for network security analysis have historically focused on the actions of the network hosts. Outside of forensic analysis, little has been done to detect or predict malicious or infected nodes strictly based on their association with other known malicious nodes. This methodology is highly prevalent in the graph analytics world, however, and is referred to as community detection. In this paper, we present a method for detecting malicious and infected nodes on both monitored networks and the external Internet. We leverage prior community detection and graphical modeling work by propagating threat probabilities across network nodes, given an initial set of known malicious nodes. We enhance prior work by employing constraints that remove the adverse effect of cyclic propagation that is a byproduct of current methods. We demonstrate the effectiveness of probabilistic threat propagation on the tasks of detecting botnets and malicious web destinations.

Boruah, A., Hazarika, S.M..  2014.  An MEBN framework as a dynamic firewall's knowledge flow architecture. Signal Processing and Integrated Networks (SPIN), 2014 International Conference on. :249-254.

Dynamic firewalls with stateful inspection have added a lot of security features over the stateless traditional static filters. Dynamic firewalls need to be adaptive. In this paper, we have designed a framework for dynamic firewalls based on probabilistic ontology using Multi Entity Bayesian Networks (MEBN) logic. MEBN extends ordinary Bayesian networks to allow representation of graphical models with repeated substructures and can express a probability distribution over models of any consistent first order theory. The motivation of our proposed work is about preventing novel attacks (i.e. those attacks for which no signatures have been generated yet). The proposed framework is in two important parts: first part is the data flow architecture which extracts important connection based features with the prime goal of an explicit rule inclusion into the rule base of the firewall; second part is the knowledge flow architecture which uses semantic threat graph as well as reasoning under uncertainty to fulfill the required objective of providing futuristic threat prevention technique in dynamic firewalls.

Tsilopoulos, C., Xylomenos, G., Thomas, Y..  2014.  Reducing forwarding state in content-centric networks with semi-stateless forwarding. INFOCOM, 2014 Proceedings IEEE. :2067-2075.

Routers in the Content-Centric Networking (CCN) architecture maintain state for all pending content requests, so as to be able to later return the corresponding content. By employing stateful forwarding, CCN supports native multicast, enhances security and enables adaptive forwarding, at the cost of excessive forwarding state that raises scalability concerns. We propose a semi-stateless forwarding scheme in which, instead of tracking each request at every on-path router, requests are tracked at every d hops. At intermediate hops, requests gather reverse path information, which is later used to deliver responses between routers using Bloom filter-based stateless forwarding. Our approach effectively reduces forwarding state, while preserving the advantages of CCN forwarding. Evaluation results over realistic ISP topologies show that our approach reduces forwarding state by 54%-70% in unicast delivery, without any bandwidth penalties, while in multicast delivery it reduces forwarding state by 34%-55% at the expense of 6%-13% in bandwidth overhead.
 

2015-05-05
Wei Peng, Feng Li, Chin-Tser Huang, Xukai Zou.  2014.  A moving-target defense strategy for Cloud-based services with heterogeneous and dynamic attack surfaces. Communications (ICC), 2014 IEEE International Conference on. :804-809.

Due to deep automation, the configuration of many Cloud infrastructures is static and homogeneous, which, while easing administration, significantly decreases a potential attacker's uncertainty on a deployed Cloud-based service and hence increases the chance of the service being compromised. Moving-target defense (MTD) is a promising solution to the configuration staticity and homogeneity problem. This paper presents our findings on whether and to what extent MTD is effective in protecting a Cloud-based service with heterogeneous and dynamic attack surfaces - these attributes, which match the reality of current Cloud infrastructures, have not been investigated together in previous works on MTD in general network settings. We 1) formulate a Cloud-based service security model that incorporates Cloud-specific features such as VM migration/snapshotting and the diversity/compatibility of migration, 2) consider the accumulative effect of the attacker's intelligence on the target service's attack surface, 3) model the heterogeneity and dynamics of the service's attack surfaces, as defined by the (dynamic) probability of the service being compromised, as an S-shaped generalized logistic function, and 4) propose a probabilistic MTD service deployment strategy that exploits the dynamics and heterogeneity of attack surfaces for protecting the service against attackers. Through simulation, we identify the conditions and extent of the proposed MTD strategy's effectiveness in protecting Cloud-based services. Namely, 1) MTD is more effective when the service deployment is dense in the replacement pool and/or when the attack is strong, and 2) attack-surface heterogeneity-and-dynamics awareness helps in improving MTD's effectiveness.

2015-05-01
Lichtblau, B., Dittrich, A..  2014.  Probabilistic Breadth-First Search - A Method for Evaluation of Network-Wide Broadcast Protocols. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-6.

In Wireless Mesh Networks (WMNs), Network-Wide Broadcasts (NWBs) are a fundamental operation, required by routing and other mechanisms that distribute information to all nodes in the network. However, due to the characteristics of wireless communication, NWBs are generally problematic. Optimizing them thus is a prime target when improving the overall performance and dependability of WMNs. Most existing optimizations neglect the real nature of WMNs and are based on simple graph models, which provide optimistic assumptions of NWB dissemination. On the other hand, models that fully consider the complex propagation characteristics of NWBs quickly become unsolvable due to their complexity. In this paper, we present the Monte Carlo method Probabilistic Breadth-First Search (PBFS) to approximate the reachability of NWB protocols. PBFS simulates individual NWBs on graphs with probabilistic edge weights, which reflect link qualities of individual wireless links in the WMN, and estimates reachability over a configurable number of simulated runs. This approach is not only more efficient than existing ones, but further provides additional information, such as the distribution of path lengths. Furthermore, it is easily extensible to NWB schemes other than flooding. The applicability of PBFS is validated both theoretically and empirically, in the latter by comparing reachability as calculated by PBFS and measured in a real-world WMN. Validation shows that PBFS quickly converges to the theoretically correct value and approximates the behavior of real-life testbeds very well. The feasibility of PBFS to support research on NWB optimizations or higher level protocols that employ NWBs is demonstrated in two use cases.

2015-04-30
Maheshwari, R., Krishna, C.R., Brahma, M.S..  2014.  Defending network system against IP spoofing based distributed DoS attacks using DPHCF-RTT packet filtering technique. Issues and Challenges in Intelligent Computing Techniques (ICICT), 2014 International Conference on. :206-209.

IP spoofing based DDoS attack that relies on multiple compromised hosts in the network to attack the victim. In IP spoofing, IP addresses can be forged easily, thus, makes it difficult to filter illegitimate packets from legitimate one out of aggregated traffic. A number of mitigation techniques have been proposed in the literature by various researchers. The conventional Hop Count Filtering or probabilistic Hop Count Filtering based research work indicates the problems related to higher computational time and low detection rate of illegitimate packets. In this paper, DPHCF-RTT technique has been implemented and analysed for variable number of hops. Goal is to improve the limitations of Conventional HCF or Probabilistic HCF techniques by maximizing the detection rate of illegitimate packets and reducing the computation time. It is based on distributed probabilistic HCF using RTT. It has been used in an intermediate system. It has the advantage for resolving the problems of network bandwidth jam and host resources exhaustion. MATLAB 7 has been used for simulations. Mitigation of DDoS attacks have been done through DPHCF-RTT technique. It has been shown a maximum detection rate up to 99% of malicious packets.