Visible to the public Biblio

Filters: Keyword is Probabilistic logic  [Clear All Filters]
2023-09-08
Chen, Xuan, Li, Fei.  2022.  Research on the Algorithm of Situational Element Extraction of Internet of Vehicles Security based on Optimized-FOA-PNN. 2022 7th International Conference on Cyber Security and Information Engineering (ICCSIE). :109–112.

The scale of the intelligent networked vehicle market is expanding rapidly, and network security issues also follow. A Situational Awareness (SA) system can detect, identify, and respond to security risks from a global perspective. In view of the discrete and weak correlation characteristics of perceptual data, this paper uses the Fly Optimization Algorithm (FOA) based on dynamic adjustment of the optimization step size to improve the convergence speed, and optimizes the extraction model of security situation element of the Internet of Vehicles (IoV), based on Probabilistic Neural Network (PNN), to improve the accuracy of element extraction. Through the comparison of experimental algorithms, it is verified that the algorithm has fast convergence speed, high precision and good stability.

2023-07-31
Skvortcov, Pavel, Koike-Akino, Toshiaki, Millar, David S., Kojima, Keisuke, Parsons, Kieran.  2022.  Dual Coding Concatenation for Burst-Error Correction in Probabilistic Amplitude Shaping. Journal of Lightwave Technology. 40:5502—5513.
We propose the use of dual coding concatenation for mitigation of post-shaping burst errors in probabilistic amplitude shaping (PAS) architectures. The proposed dual coding concatenation for PAS is a hybrid integration of conventional reverse concatenation and forward concatenation, i.e., post-shaping forward error correction (FEC) layer and pre-shaping FEC layer, respectively. A low-complexity architecture based on parallel Bose–Chaudhuri–Hocquenghem (BCH) codes is introduced for the pre-shaping FEC layer. Proposed dual coding concatenation can relax bit error rate (BER) requirement after post-shaping soft-decision (SD) FEC codes by an order of magnitude, resulting in a gain of up to 0.25 dB depending on the complexity of post-shaping FEC. Also, combined shaping and coding performance was analyzed based on sphere shaping and the impact of shaping length on coding performance was demonstrated.
Conference Name: Journal of Lightwave Technology
Zhang, Liangjun, Tao, Kai, Qian, Weifeng, Wang, Weiming, Liang, Junpeng, Cai, Yi, Feng, Zhenhua.  2022.  Real-Time FPGA Investigation of Interplay Between Probabilistic Shaping and Forward Error Correction. Journal of Lightwave Technology. 40:1339—1345.
In this work, we implement a complete probabilistic amplitude shaping (PAS) architecture on a field-programmable gate array (FPGA) platform to study the interplay between probabilistic shaping (PS) and forward error correction (FEC). Due to the fully parallelized input–output interfaces based on look up table (LUT) and low computational complexity without high-precision multiplication, hierarchical distribution matching (HiDM) is chosen as the solution for real time probabilistic shaping. In terms of FEC, we select two kinds of the mainstream soft decision-forward error correction (SD-FEC) algorithms currently used in optical communication system, namely Open FEC (OFEC) and soft-decision quasi-cyclic low-density parity-check (SD-QC-LDPC) codes. Through FPGA experimental investigation, we studied the impact of probabilistic shaping on OFEC and LDPC, respectively, based on PS-16QAM under moderate shaping, and also the impact of probabilistic shaping on LDPC code based on PS-64QAM under weak/strong shaping. The FPGA experimental results show that if pre-FEC bit error rate (BER) is used as the predictor, moderate shaping induces no degradation on the OFEC performance, while strong shaping slightly degrades the error correction performance of LDPC. Nevertheless, there is no error floor when the output BER is around 10-15. However, if normalized generalized mutual information (NGMI) is selected as the predictor, the performance degradation of LDPC will become insignificant, which means pre-FEC BER may not a good predictor for LDPC in probabilistic shaping scenario. We also studied the impact of residual errors after FEC decoding on HiDM. The FPGA experimental results show that the increased BER after HiDM decoding is within 10 times compared to post-FEC BER.
Conference Name: Journal of Lightwave Technology
2023-07-21
Liu, Mingchang, Sachidananda, Vinay, Peng, Hongyi, Patil, Rajendra, Muneeswaran, Sivaanandh, Gurusamy, Mohan.  2022.  LOG-OFF: A Novel Behavior Based Authentication Compromise Detection Approach. 2022 19th Annual International Conference on Privacy, Security & Trust (PST). :1—10.
Password-based authentication system has been praised for its user-friendly, cost-effective, and easily deployable features. It is arguably the most commonly used security mechanism for various resources, services, and applications. On the other hand, it has well-known security flaws, including vulnerability to guessing attacks. Present state-of-the-art approaches have high overheads, as well as difficulties and unreliability during training, resulting in a poor user experience and a high false positive rate. As a result, a lightweight authentication compromise detection model that can make accurate detection with a low false positive rate is required.In this paper we propose – LOG-OFF – a behavior-based authentication compromise detection model. LOG-OFF is a lightweight model that can be deployed efficiently in practice because it does not include a labeled dataset. Based on the assumption that the behavioral pattern of a specific user does not suddenly change, we study the real-world authentication traffic data. The dataset contains more than 4 million records. We use two features to model the user behaviors, i.e., consecutive failures and login time, and develop a novel approach. LOG-OFF learns from the historical user behaviors to construct user profiles and makes probabilistic predictions of future login attempts for authentication compromise detection. LOG-OFF has a low false positive rate and latency, making it suitable for real-world deployment. In addition, it can also evolve with time and make more accurate detection as more data is being collected.
2023-07-13
Kori, Prachi, Cecil, Kanchan.  2022.  Secure Wireless Sensor Network Design Using a New Method of High-Speed Lightweight Encryption. 2022 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA. :1–8.
Data streaming over a wireless network such as Wireless Sensor Networks, where wireless terminals (like PDAs, mobile phones, palmtops) access in data conferencing system, new challenges will be brought about. goal for this paper is to propose a high-speed lightweight encryption (HSLE) for low computational capability controller of WSN, HSLE scheme which reduces latency overhead by modifying existing approaches in order to encrypting data using a probabilistic encryption of data blocks. Proposed work is also useful when we communicate our confidential data on WSN or IoT it should be secure, we just have to save an encrypted data on cloud servers. proposed work is a new key-based algorithm and uses HSLE encryption instead for high end AES. Proposed methods cause significant speed enhancement for data encryption with similar security, in addition, it is best suited in order to communication between hand-held devices such as mobile phones, palmtops etc. algorithm may be used between sites where processing capacity and battery power are limited and efficient encryption is main necessity. This work is implemented on MATLAB and a wireless sensor network of maximum 100 nodes developed for testing the proposed network node encryption system, the time delay observed for the communication in 100 nodes WSN is less in compare with the other available works.
ISSN: 2771-1358
2023-06-30
Mimoto, Tomoaki, Hashimoto, Masayuki, Yokoyama, Hiroyuki, Nakamura, Toru, Isohara, Takamasa, Kojima, Ryosuke, Hasegawa, Aki, Okuno, Yasushi.  2022.  Differential Privacy under Incalculable Sensitivity. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :27–31.
Differential privacy mechanisms have been proposed to guarantee the privacy of individuals in various types of statistical information. When constructing a probabilistic mechanism to satisfy differential privacy, it is necessary to consider the impact of an arbitrary record on its statistics, i.e., sensitivity, but there are situations where sensitivity is difficult to derive. In this paper, we first summarize the situations in which it is difficult to derive sensitivity in general, and then propose a definition equivalent to the conventional definition of differential privacy to deal with them. This definition considers neighboring datasets as in the conventional definition. Therefore, known differential privacy mechanisms can be applied. Next, as an example of the difficulty in deriving sensitivity, we focus on the t-test, a basic tool in statistical analysis, and show that a concrete differential privacy mechanism can be constructed in practice. Our proposed definition can be treated in the same way as the conventional differential privacy definition, and can be applied to cases where it is difficult to derive sensitivity.
2023-06-09
Vasisht, Soumya, Rahman, Aowabin, Ramachandran, Thiagarajan, Bhattacharya, Arnab, Adetola, Veronica.  2022.  Multi-fidelity Bayesian Optimization for Co-design of Resilient Cyber-Physical Systems. 2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS). :298—299.
A simulation-based optimization framework is developed to con-currently design the system and control parameters to meet de-sired performance and operational resiliency objectives. Leveraging system information from both data and models of varying fideli-ties, a rigorous probabilistic approach is employed for co-design experimentation. Significant economic benefits and resilience im-provements are demonstrated using co-design compared to existing sequential designs for cyber-physical systems.
2023-02-02
Oakley, Lisa, Oprea, Alina, Tripakis, Stavros.  2022.  Adversarial Robustness Verification and Attack Synthesis in Stochastic Systems. 2022 IEEE 35th Computer Security Foundations Symposium (CSF). :380–395.

Probabilistic model checking is a useful technique for specifying and verifying properties of stochastic systems including randomized protocols and reinforcement learning models. However, these methods rely on the assumed structure and probabilities of certain system transitions. These assumptions may be incorrect, and may even be violated by an adversary who gains control of some system components. In this paper, we develop a formal framework for adversarial robustness in systems modeled as discrete time Markov chains (DTMCs). We base our framework on existing methods for verifying probabilistic temporal logic properties and extend it to include deterministic, memoryless policies acting in Markov decision processes (MDPs). Our framework includes a flexible approach for specifying structure-preserving and non structure-preserving adversarial models. We outline a class of threat models under which adversaries can perturb system transitions, constrained by an ε ball around the original transition probabilities. We define three main DTMC adversarial robustness problems: adversarial robustness verification, maximal δ synthesis, and worst case attack synthesis. We present two optimization-based solutions to these three problems, leveraging traditional and parametric probabilistic model checking techniques. We then evaluate our solutions on two stochastic protocols and a collection of Grid World case studies, which model an agent acting in an environment described as an MDP. We find that the parametric solution results in fast computation for small parameter spaces. In the case of less restrictive (stronger) adversaries, the number of parameters increases, and directly computing property satisfaction probabilities is more scalable. We demonstrate the usefulness of our definitions and solutions by comparing system outcomes over various properties, threat models, and case studies.

2022-12-20
Lin, Xuanwei, Dong, Chen, Liu, Ximeng, Zhang, Yuanyuan.  2022.  SPA: An Efficient Adversarial Attack on Spiking Neural Networks using Spike Probabilistic. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :366–375.
With the future 6G era, spiking neural networks (SNNs) can be powerful processing tools in various areas due to their strong artificial intelligence (AI) processing capabilities, such as biometric recognition, AI robotics, autonomous drive, and healthcare. However, within Cyber Physical System (CPS), SNNs are surprisingly vulnerable to adversarial examples generated by benign samples with human-imperceptible noise, this will lead to serious consequences such as face recognition anomalies, autonomous drive-out of control, and wrong medical diagnosis. Only by fully understanding the principles of adversarial attacks with adversarial samples can we defend against them. Nowadays, most existing adversarial attacks result in a severe accuracy degradation to trained SNNs. Still, the critical issue is that they only generate adversarial samples by randomly adding, deleting, and flipping spike trains, making them easy to identify by filters, even by human eyes. Besides, the attack performance and speed also can be improved further. Hence, Spike Probabilistic Attack (SPA) is presented in this paper and aims to generate adversarial samples with more minor perturbations, greater model accuracy degradation, and faster iteration. SPA uses Poisson coding to generate spikes as probabilities, directly converting input data into spikes for faster speed and generating uniformly distributed perturbation for better attack performance. Moreover, an objective function is constructed for minor perturbations and keeping attack success rate, which speeds up the convergence by adjusting parameters. Both white-box and black-box settings are conducted to evaluate the merits of SPA. Experimental results show the model's accuracy under white-box attack decreases by 9.2S% 31.1S% better than others, and average success rates are 74.87% under the black-box setting. The experimental results indicate that SPA has better attack performance than other existing attacks in the white-box and better transferability performance in the black-box setting,
2022-12-09
Casimiro, Maria, Romano, Paolo, Garlan, David, Rodrigues, Luís.  2022.  Towards a Framework for Adapting Machine Learning Components. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). :131—140.
Machine Learning (ML) models are now commonly used as components in systems. As any other component, ML components can produce erroneous outputs that may penalize system utility. In this context, self-adaptive systems emerge as a natural approach to cope with ML mispredictions, through the execution of adaptation tactics such as model retraining. To synthesize an adaptation strategy, the self-adaptation manager needs to reason about the cost-benefit tradeoffs of the applicable tactics, which is a non-trivial task for tactics such as model retraining, whose benefits are both context- and data-dependent.To address this challenge, this paper proposes a probabilistic modeling framework that supports automated reasoning about the cost/benefit tradeoffs associated with improving ML components of ML-based systems. The key idea of the proposed approach is to decouple the problems of (i) estimating the expected performance improvement after retrain and (ii) estimating the impact of ML improved predictions on overall system utility.We demonstrate the application of the proposed framework by using it to self-adapt a state-of-the-art ML-based fraud-detection system, which we evaluate using a publicly-available, real fraud detection dataset. We show that by predicting system utility stemming from retraining a ML component, the probabilistic model checker can generate adaptation strategies that are significantly closer to the optimal, as compared against baselines such as periodic retraining, or reactive retraining.
2022-10-16
Song, Xiumin, Liu, Bo, Zhang, Hongxin, Mao, Yaya, Ren, Jianxin, Chen, Shuaidong, Xu, Hui, Zhang, Jingyi, Jiang, Lei, Zhao, Jianye et al..  2020.  Security Enhancing and Probability Shaping Coordinated Optimization for CAP-PON in Physical Layer. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). :1–3.
A secure-enhanced scheme based on deoxyribonucleic acid (DNA) encoding encryption and probabilistic shaping (PS) is proposed. Experimental results verify the superiority of our proposed scheme in the achievement of security and power gain. © 2020 The Author(s).
Xu, Zhifan, Baykal-Gürsoy, Melike, Spasojević, Predrag.  2021.  A Game-Theoretic Approach for Probabilistic Cooperative Jamming Strategies over Parallel Wireless Channels. 2021 IEEE Conference on Communications and Network Security (CNS). :47–55.
Considered is a network of parallel wireless channels in which individual parties are engaged in secret communication under the protection of cooperative jamming. A strategic eavesdropper selects the most vulnerable channels to attack. Existing works usually suggest the defender allocate limited cooperative jamming power to various channels. However, it usually requires some strong assumptions and complex computation to find such an optimal power control policy. This paper proposes a probabilistic cooperative jamming scheme such that the defender focuses on protecting randomly selected channels. Two different cases regarding each channel’s eavesdropping capacity are discussed. The first case studies the general scenario where each channel has different eavesdropping capacity. The second case analyzes an extreme scenario where all channels have the same eavesdropping capacity. Two non-zero-sum Nash games model the competition between the network defender and an eavesdropper in each case. Furthermore, considering the case that the defender does not know the eavesdropper’s channel state information (CSI) leads to a Bayesian game. For all three games, we derive conditions for the existence of a unique Nash equilibrium (NE), and obtain the equilibria and the value functions in closed form.
2022-10-06
Djurayev, Rustam, Djabbarov, Shukhrat, Matkurbonov, Dilshod, Khasanov, Orifjon.  2021.  Approaches and Methods for Assessing the Information Security of Data Transmission Networks. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1–4.
The report examines approaches to assessing the information security of data transmission networks (DTN). The analysis of methods for quantitative assessment of information security risks is carried out. A methodological approach to the assessment of IS DTN based on the risk-oriented method is presented. A method for assessing risks based on the mathematical apparatus of the queening systems (QS) is considered and the problem of mathematical modeling is solved.
2022-09-30
Ilina, D. V., Eryshov, V. G..  2021.  Analytical Model of Actions of the Information Security Violator on Covert Extraction of Confidential Information Processed on the Protected Object. 2021 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). :1–4.
The article describes an analytical model of the actions of an information security violator for the secret extraction of confidential information processed on the protected object in terms of the theory of Markov random processes. The characteristics of the existing models are given, as well as the requirements that are imposed on the model for simulating the process. All model states are described in detail, as well as the data flow that is used in the process simulation. The model is represented as a directed state graph. It also describes the option for evaluating the data obtained during modeling. In the modern world, with the developing methods and means of covert extraction of information, the problem of assessing the damage that can be caused by the theft of the organization's data is acute. This model can be used to build a model of information security threats.
Matoušek, Petr, Havlena, Vojtech, Holík, Lukáš.  2021.  Efficient Modelling of ICS Communication For Anomaly Detection Using Probabilistic Automata. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :81–89.
Industrial Control System (ICS) communication transmits monitoring and control data between industrial processes and the control station. ICS systems cover various domains of critical infrastructure such as the power plants, water and gas distribution, or aerospace traffic control. Security of ICS systems is usually implemented on the perimeter of the network using ICS enabled firewalls or Intrusion Detection Systems (IDSs). These techniques are helpful against external attacks, however, they are not able to effectively detect internal threats originating from a compromised device with malicious software. In order to mitigate or eliminate internal threats against the ICS system, we need to monitor ICS traffic and detect suspicious data transmissions that differ from common operational communication. In our research, we obtain ICS monitoring data using standardized IPFIX flows extended with meta data extracted from ICS protocol headers. Unlike other anomaly detection approaches, we focus on modelling the semantics of ICS communication obtained from the IPFIX flows that describes typical conversational patterns. This paper presents a technique for modelling ICS conversations using frequency prefix trees and Deterministic Probabilistic Automata (DPA). As demonstrated on the attack scenarios, these models are efficient to detect common cyber attacks like the command injection, packet manipulation, network scanning, or lost connection. An important advantage of our approach is that the proposed technique can be easily integrated into common security information and event management (SIEM) systems with Netflow/IPFIX support. Our experiments are performed on IEC 60870-5-104 (aka IEC 104) control communication that is widely used for the substation control in smart grids.
2022-08-26
Zhang, Yuchen, Dong, Zhao Yang, Xu, Yan, Su, Xiangjing, Fu, Yang.  2020.  Impact Analysis of Intra-Interval Variation on Dynamic Security Assessment of Wind-Energy Power Systems. 2020 IEEE Power & Energy Society General Meeting (PESGM). :1–5.
Dynamic security assessment (DSA) is to ensure the power system being operated under a secure condition that can withstand potential contingencies. DSA normally proceeds periodically on a 5 to 15 minutes basis, where the system security condition over a complete time interval is merely determined upon the system snapshot captured at the beginning of the interval. With high wind power penetration, the minute-to-minute variations of wind power can lead to more volatile power system states within a single DSA time interval. This paper investigates the intra-interval variation (IIV) phenomenon in power system online DSA and analyze whether the IIV problem is deserved attention in future DSA research and applications. An IIV-contaminated testing environment based on hierarchical Monte-Carlo simulation is developed to evaluate the practical IIV impacts on power system security and DSA performance. The testing results show increase in system insecurity risk and significant degradation in DSA accuracy in presence of IIV. This result draws attention to the IIV phenomenon in DSA of wind-energy power systems and calls for more robust DSA approach to mitigate the IIV impacts.
Nazarova, O. Yu., Sklyarov, Alexey, Shilina, A. N..  2021.  Methods for Determining a Quantitative Indicator of Threats to Information Security in Telecommunications and Industrial Automation Systems. 2021 International Russian Automation Conference (RusAutoCon). :730—734.

The paper considers the issue of assessing threats to information security in industrial automation and telecommunication systems in order to improve the efficiency of their security systems. A method for determining a quantitative indicator of threats is proposed, taking into account the probabilistic nature of the process of implementing negative impacts on objects of both industrial and telecommunications systems. The factors that contribute and (or) initiate them are also determined, the dependences of the formal definition of the quantitative indicator of threats are obtained. Methods for a quantitative threat assessment as well as the degree of this threat are presented in the form of a mathematical model in order to substantiate and describe the method for determining a threat to industrial automation systems. Recommendations necessary for obtaining expert assessments of negative impacts on the informatisation objects and information security systems counteracting are formulated to facilitate making decisions on the protection of industrial and telecommunication systems.

2022-08-12
Kafedziski, Venceslav.  2021.  Compressive Sampling Stepped Frequency GPR Using Probabilistic Structured Sparsity Models. 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (℡SIKS). :139—144.
We investigate a compressive sampling (CS) stepped frequency ground penetrating radar for detection of underground objects, which uses Bayesian estimation and a probabilistic model for the target support. Due to the underground targets being sparse, the B-scan is a sparse image. Using the CS principle, the stepped frequency radar is implemented using a subset of random frequencies at each antenna position. For image reconstruction we use Markov Chain and Markov Random Field models for the target support in the B-scan, where we also estimate the model parameters using the Expectation Maximization algorithm. The approach is tested using Web radar data obtained by measuring the signal responses scattered off land mine targets in a laboratory experimental setup. Our approach results in improved performance compared to the standard denoising algorithm for image reconstruction.
2022-06-08
Yang, Ruxia, Gao, Xianzhou, Gao, Peng.  2021.  Research on Intelligent Recognition and Tracking Technology of Sensitive Data for Electric Power Big Data. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :229–234.
Current power sensitive data security protection adopts classification and grading protection. Company classification and grading are mainly in formulating specifications. Data classification and grading processing is carried out manually, which is heavy and time-consuming, while traditional data identification mainly relies on rules for data identification, the level of automation and intelligence is low, and there are many problems in recognition accuracy. Data classification and classification is the basis of data security protection. Sensitive data identification is the key to data classification and classification, and it is also the first step to achieve accurate data security protection. This paper proposes an intelligent identification and tracking technology of sensitive data for electric power big data, which can improve the ability of data classification and classification, help the realization of data classification and classification, and provide support for the accurate implementation of data security capabilities.
2022-05-19
Gylling, Andreas, Ekstedt, Mathias, Afzal, Zeeshan, Eliasson, Per.  2021.  Mapping Cyber Threat Intelligence to Probabilistic Attack Graphs. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :304–311.
As cyber threats continue to grow and expertise resources are limited, organisations need to find ways to evaluate their resilience efficiently and take proactive measures against an attack from a specific adversary before it occurs. Threat modelling is an excellent method of assessing the resilience of ICT systems, forming Attack (Defense) Graphs (ADGs) that illustrate an adversary’s attack vectors. Cyber Threat Intelligence (CTI) is information that helps understand the current cyber threats, but has little integration with ADGs. This paper contributes with an approach that resolves this problem by using CTI feeds of known threat actors to enrich ADGs under multiple reuse. This enables security analysts to take proactive measures and strengthen their ICT systems against current methods used by any threat actor that is believed to pose a threat to them.
2022-04-13
Goldschmidt, Patrik, Kučera, Jan.  2021.  Defense Against SYN Flood DoS Attacks Using Network-based Mitigation Techniques. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :772—777.

TCP SYN Flood is one of the most widespread DoS attack types performed on computer networks nowadays. As a possible countermeasure, we implemented and deployed modified versions of three network-based mitigation techniques for TCP SYN authentication. All of them utilize the TCP three-way handshake mechanism to establish a security association with a client before forwarding its SYN data. These algorithms are especially effective against regular attacks with spoofed IP addresses. However, our modifications allow deflecting even more sophisticated SYN floods able to bypass most of the conventional approaches. This comes at the cost of the delayed first connection attempt, but all subsequent SYN segments experience no significant additional latency (\textbackslashtextless; 0.2ms). This paper provides a detailed description and analysis of the approaches, as well as implementation details with enhanced security tweaks. The discussed implementations are built on top of the hardware-accelerated FPGA-based DDoS protection solution developed by CESNET and are about to be deployed in its backbone network and Internet exchange point at NIX.CZ.

2022-04-01
Lanotte, Ruggero, Merro, Massimo, Munteanu, Andrei, Tini, Simone.  2021.  Formal Impact Metrics for Cyber-physical Attacks. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1—16.
Cyber-Physical systems (CPSs) are exposed to cyber- physical attacks, i.e., security breaches in cyberspace that adversely affect the physical processes of the systems.We define two probabilistic metrics to estimate the physical impact of attacks targeting cyber-physical systems formalised in terms of a probabilistic hybrid extension of Hennessy and Regan's Timed Process Language. Our impact metrics estimate the impact of cyber-physical attacks taking into account: (i) the severity of the inflicted damage in a given amount of time, and (ii) the probability that these attacks are actually accomplished, according to the dynamics of the system under attack. In doing so, we pay special attention to stealthy attacks, i. e., attacks that cannot be detected by intrusion detection systems. As further contribution, we show that, under precise conditions, our metrics allow us to estimate the impact of attacks targeting a complex CPS in a compositional way, i.e., in terms of the impact on its sub-systems.
Hirano, Takato, Kawai, Yutaka, Koseki, Yoshihiro.  2021.  DBMS-Friendly Searchable Symmetric Encryption: Constructing Index Generation Suitable for Database Management Systems. 2021 IEEE Conference on Dependable and Secure Computing (DSC). :1—8.
Searchable symmetric encryption enables users with the secret key to conduct keyword search on encrypted data without decryption. Recently, dynamic searchable symmetric encryption (DSSE) which provides secure functionalities for adding or deleting documents has been studied extensively. Many DSSE schemes construct indexes in order to efficiently conduct keyword search. On the other hand, the indexes constructed in DSSE are complicated and independent to indexes supported by database management systems (DBMSs). Plug-in developments over DBMSs are often restricted, and therefore it is not easy to develop softwares which can deploy DSSE schemes to DBMSs. In this paper, we propose a DBMS-friendly searchable symmetric encryption scheme which can generate indexes suitable for DBMSs. Our index can narrow down encrypted data which should be conducted keyword search, and be combined with well-used indexes supported by many DBMSs. Our index consists of a small portion of an output value of a cryptographic deterministic function (e.g. pseudo-random function or hash function). We also show an experiment result of our scheme deployed to DBMSs.
2022-03-15
Baluta, Teodora, Chua, Zheng Leong, Meel, Kuldeep S., Saxena, Prateek.  2021.  Scalable Quantitative Verification for Deep Neural Networks. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :248—249.
Despite the functional success of deep neural networks (DNNs), their trustworthiness remains a crucial open challenge. To address this challenge, both testing and verification techniques have been proposed. But these existing techniques pro- vide either scalability to large networks or formal guarantees, not both. In this paper, we propose a scalable quantitative verification framework for deep neural networks, i.e., a test-driven approach that comes with formal guarantees that a desired probabilistic property is satisfied. Our technique performs enough tests until soundness of a formal probabilistic property can be proven. It can be used to certify properties of both deterministic and randomized DNNs. We implement our approach in a tool called PROVERO1 and apply it in the context of certifying adversarial robustness of DNNs. In this context, we first show a new attack- agnostic measure of robustness which offers an alternative to purely attack-based methodology of evaluating robustness being reported today. Second, PROVERO provides certificates of robustness for large DNNs, where existing state-of-the-art verification tools fail to produce conclusive results. Our work paves the way forward for verifying properties of distributions captured by real-world deep neural networks, with provable guarantees, even where testers only have black-box access to the neural network.
2022-03-08
Jia, Yunsong.  2021.  Design of nearest neighbor search for dynamic interaction points. 2021 2nd International Conference on Big Data and Informatization Education (ICBDIE). :389—393.
This article describes the definition, theoretical derivation, design ideas, and specific implementation of the nearest query algorithm for the acceleration of probabilistic optimization at first, and secondly gives an optimization conclusion that is generally applicable to high-dimensional Minkowski spaces with even-numbered feature parameters. Thirdly the operating efficiency and space sensitivity of this algorithm and the commonly used algorithms are compared from both theoretical and experimental aspects. Finally, the optimization direction is analyzed based on the results.