Biblio
The scale of the intelligent networked vehicle market is expanding rapidly, and network security issues also follow. A Situational Awareness (SA) system can detect, identify, and respond to security risks from a global perspective. In view of the discrete and weak correlation characteristics of perceptual data, this paper uses the Fly Optimization Algorithm (FOA) based on dynamic adjustment of the optimization step size to improve the convergence speed, and optimizes the extraction model of security situation element of the Internet of Vehicles (IoV), based on Probabilistic Neural Network (PNN), to improve the accuracy of element extraction. Through the comparison of experimental algorithms, it is verified that the algorithm has fast convergence speed, high precision and good stability.
Probabilistic model checking is a useful technique for specifying and verifying properties of stochastic systems including randomized protocols and reinforcement learning models. However, these methods rely on the assumed structure and probabilities of certain system transitions. These assumptions may be incorrect, and may even be violated by an adversary who gains control of some system components. In this paper, we develop a formal framework for adversarial robustness in systems modeled as discrete time Markov chains (DTMCs). We base our framework on existing methods for verifying probabilistic temporal logic properties and extend it to include deterministic, memoryless policies acting in Markov decision processes (MDPs). Our framework includes a flexible approach for specifying structure-preserving and non structure-preserving adversarial models. We outline a class of threat models under which adversaries can perturb system transitions, constrained by an ε ball around the original transition probabilities. We define three main DTMC adversarial robustness problems: adversarial robustness verification, maximal δ synthesis, and worst case attack synthesis. We present two optimization-based solutions to these three problems, leveraging traditional and parametric probabilistic model checking techniques. We then evaluate our solutions on two stochastic protocols and a collection of Grid World case studies, which model an agent acting in an environment described as an MDP. We find that the parametric solution results in fast computation for small parameter spaces. In the case of less restrictive (stronger) adversaries, the number of parameters increases, and directly computing property satisfaction probabilities is more scalable. We demonstrate the usefulness of our definitions and solutions by comparing system outcomes over various properties, threat models, and case studies.
The paper considers the issue of assessing threats to information security in industrial automation and telecommunication systems in order to improve the efficiency of their security systems. A method for determining a quantitative indicator of threats is proposed, taking into account the probabilistic nature of the process of implementing negative impacts on objects of both industrial and telecommunications systems. The factors that contribute and (or) initiate them are also determined, the dependences of the formal definition of the quantitative indicator of threats are obtained. Methods for a quantitative threat assessment as well as the degree of this threat are presented in the form of a mathematical model in order to substantiate and describe the method for determining a threat to industrial automation systems. Recommendations necessary for obtaining expert assessments of negative impacts on the informatisation objects and information security systems counteracting are formulated to facilitate making decisions on the protection of industrial and telecommunication systems.
TCP SYN Flood is one of the most widespread DoS attack types performed on computer networks nowadays. As a possible countermeasure, we implemented and deployed modified versions of three network-based mitigation techniques for TCP SYN authentication. All of them utilize the TCP three-way handshake mechanism to establish a security association with a client before forwarding its SYN data. These algorithms are especially effective against regular attacks with spoofed IP addresses. However, our modifications allow deflecting even more sophisticated SYN floods able to bypass most of the conventional approaches. This comes at the cost of the delayed first connection attempt, but all subsequent SYN segments experience no significant additional latency (\textbackslashtextless; 0.2ms). This paper provides a detailed description and analysis of the approaches, as well as implementation details with enhanced security tweaks. The discussed implementations are built on top of the hardware-accelerated FPGA-based DDoS protection solution developed by CESNET and are about to be deployed in its backbone network and Internet exchange point at NIX.CZ.