Biblio
The growing volume of data and its increasing complexity require even more efficient and faster information retrieval techniques. Approximate nearest neighbor search algorithms based on hashing were proposed to query high-dimensional datasets due to its high retrieval speed and low storage cost. Recent studies promote the use of Convolutional Neural Network (CNN) with hashing techniques to improve the search accuracy. However, there are challenges to solve in order to find a practical and efficient solution to index CNN features, such as the need for a heavy training process to achieve accurate query results and the critical dependency on data-parameters. In this work we execute exhaustive experiments in order to compare recent methods that are able to produces a better representation of the data space with a less computational cost for a better accuracy by computing the best data-parameter values for optimal sub-space projection exploring the correlations among CNN feature attributes using fractal theory. We give an overview of these different techniques and present our comparative experiments for data representation and retrieval performance.
This paper proposes a novel recursive hashing scheme, in contrast to conventional "one-off" based hashing algorithms. Inspired by human's "nonsalient-to-salient" perception path, the proposed hashing scheme generates a series of binary codes based on progressively expanded salient regions. Built on a recurrent deep network, i.e., LSTM structure, the binary codes generated from later output nodes naturally inherit information aggregated from previously codes while explore novel information from the extended salient region, and therefore it possesses good scalability property. The proposed deep hashing network is trained via minimizing a triplet ranking loss, which is end-to-end trainable. Extensive experimental results on several image retrieval benchmarks demonstrate good performance gain over state-of-the-art image retrieval methods and its scalability property.
Hashing methods play an important role in large scale image retrieval. Traditional hashing methods use hand-crafted features to learn hash functions, which can not capture the high level semantic information. Deep hashing algorithms use deep neural networks to learn feature representation and hash functions simultaneously. Most of these algorithms exploit supervised information to train the deep network. However, supervised information is expensive to obtain. In this paper, we propose a pseudo label based unsupervised deep discriminative hashing algorithm. First, we cluster images via K-means and the cluster labels are treated as pseudo labels. Then we train a deep hashing network with pseudo labels by minimizing the classification loss and quantization loss. Experiments on two datasets demonstrate that our unsupervised deep discriminative hashing method outperforms the state-of-art unsupervised hashing methods.