Visible to the public Biblio

Filters: Keyword is unsupervised hashing  [Clear All Filters]
2020-06-12
[Anonymous].  2018.  Discrete Locally-Linear Preserving Hashing. {2018 25th IEEE International Conference on Image Processing (ICIP). :490—494.

Recently, hashing has attracted considerable attention for nearest neighbor search due to its fast query speed and low storage cost. However, existing unsupervised hashing algorithms have two problems in common. Firstly, the widely utilized anchor graph construction algorithm has inherent limitations in local weight estimation. Secondly, the locally linear structure in the original feature space is seldom taken into account for binary encoding. Therefore, in this paper, we propose a novel unsupervised hashing method, dubbed “discrete locally-linear preserving hashing”, which effectively calculates the adjacent matrix while preserving the locally linear structure in the obtained hash space. Specifically, a novel local anchor embedding algorithm is adopted to construct the approximate adjacent matrix. After that, we directly minimize the reconstruction error with the discrete constrain to learn the binary codes. Experimental results on two typical image datasets indicate that the proposed method significantly outperforms the state-of-the-art unsupervised methods.

2018-01-10
Hu, Qinghao, Wu, Jiaxiang, Cheng, Jian, Wu, Lifang, Lu, Hanqing.  2017.  Pseudo Label Based Unsupervised Deep Discriminative Hashing for Image Retrieval. Proceedings of the 2017 ACM on Multimedia Conference. :1584–1590.

Hashing methods play an important role in large scale image retrieval. Traditional hashing methods use hand-crafted features to learn hash functions, which can not capture the high level semantic information. Deep hashing algorithms use deep neural networks to learn feature representation and hash functions simultaneously. Most of these algorithms exploit supervised information to train the deep network. However, supervised information is expensive to obtain. In this paper, we propose a pseudo label based unsupervised deep discriminative hashing algorithm. First, we cluster images via K-means and the cluster labels are treated as pseudo labels. Then we train a deep hashing network with pseudo labels by minimizing the classification loss and quantization loss. Experiments on two datasets demonstrate that our unsupervised deep discriminative hashing method outperforms the state-of-art unsupervised hashing methods.