Visible to the public Biblio

Filters: Keyword is spatial data  [Clear All Filters]
2021-07-27
Zheng, Zhihao, Cao, Zhenfu, Shen, Jiachen.  2020.  Practical and Secure Circular Range Search on Private Spatial Data. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :639–645.
With the location-based services (LBS) booming, the volume of spatial data inevitably explodes. In order to reduce local storage and computational overhead, users tend to outsource data and initiate queries to the cloud. However, sensitive data or queries may be compromised if cloud server has access to raw data and plaintext token. To cope with this problem, searchable encryption for geometric range is applied. Geometric range search has wide applications in many scenarios, especially the circular range search. In this paper, a practical and secure circular range search scheme (PSCS) is proposed to support searching for spatial data in a circular range. With our scheme, a semi-honest cloud server will return data for a given circular range correctly without uncovering index privacy or query privacy. We propose a polynomial split algorithm which can decompose the inner product calculation neatly. Then, we define the security of our PSCS formally and prove that it is secure under same-closeness-pattern chosen-plaintext attacks (CLS-CPA) in theory. In addition, we demonstrate the efficiency and accuracy through analysis and experiments compared with existing schemes.
2018-01-16
Ba-Hutair, M. N., Kamel, I..  2016.  A New Scheme for Protecting the Privacy and Integrity of Spatial Data on the Cloud. 2016 IEEE Second International Conference on Multimedia Big Data (BigMM). :394–397.

As the amount of spatial data gets bigger, organizations realized that it is cheaper and more flexible to keep their data on the Cloud rather than to establish and maintain in-house huge data centers. Though this saves a lot for IT costs, organizations are still concerned about the privacy and security of their data. Encrypting the whole database before uploading it to the Cloud solves the security issue. But querying the database requires downloading and decrypting the data set, which is impractical. In this paper, we propose a new scheme for protecting the privacy and integrity of spatial data stored in the Cloud while being able to execute range queries efficiently. The proposed technique suggests a new index structure to support answering range query over encrypted data set. The proposed indexing scheme is based on the Z-curve. The paper describes a distributed algorithm for answering range queries over spatial data stored on the Cloud. We carried many simulation experiments to measure the performance of the proposed scheme. The experimental results show that the proposed scheme outperforms the most recent schemes by Kim et al. in terms of data redundancy.