Biblio
To improve dynamic updating of privacy protected data release caused by multidimensional sensitivity attribute privacy differences in relational data, we propose a dynamic updating method for privacy protection data release based on the multidimensional privacy differences. By adopting the multi-sensitive bucketization technology (MSB), this method performs quantitative classification of the multidimensional sensitive privacy difference and the recorded value, provides the basic updating operation unit, and thereby realizes dynamic updating of privacy protection data release based on the privacy difference among relational data. The experiment confirms that the method can secure the data updating efficiency while ensuring the quality of data release.
Being an era of fast internet-based application environment, large volumes of relational data are being outsourced for business purposes. Therefore, ownership and digital rights protection has become one of the greatest challenges and among the most critical issues. This paper presents a novel fingerprinting technique to protect ownership rights of non-numeric digital data on basis of pattern generation and row association schemes. Firstly, fingerprint sequence is formulated by using secret key and buyer's Unique ID. With the chunks of these sequences and by applying the Fibonacci series, we select some rows. The selected rows are candidates of fingerprinting. The primary key of selected row is protected using RSA encryption; after which a pattern is designed by randomly choosing the values of different attributes of datasets. The encryption of primary key leads to develop an association between original and fake pattern; creating an ease in fingerprint detection. Fingerprint detection algorithm first finds the fake rows and then extracts the fingerprint sequence from the fake attributes, hence identifying the traitor. Some most important features of the proposed approach is to overcome major weaknesses such as error tolerance, integrity and accuracy in previously proposed fingerprinting techniques. The results show that technique is efficient and robust against several malicious attacks.