Visible to the public Biblio

Filters: Keyword is RSA encryption  [Clear All Filters]
2020-07-13
Lee, Yong Up, Kang, Kyeong-Yoon, Choi, Ginkyu.  2019.  Secure Visible Light Encryption Communication Technique for Smart Home Service. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0827–0831.
For the security enhancement of the conventional visible light (VL) communication which allows the easy intrusion by adjacent adversary due to visible signal characteristic, the VL communication technique based on the asymmetric Rivest-Shamir-Adleman (RSA) encryption method is proposed for smart indoor service in this paper, and the optimal key length of the RSA encryption process for secure VL communication technique is investigated, and also the error performance dependent on the various asymmetric encryption key is analyzed for the performance evaluation of the proposed technique. Then we could see that the VL communication technique based on the RSA encryption gives the similar RMSE performance independent of the length of the public or private key and provides the better error performance as the signal to noise ratio (SNR) increases.
2019-02-08
Aufa, F. J., Endroyono, Affandi, A..  2018.  Security System Analysis in Combination Method: RSA Encryption and Digital Signature Algorithm. 2018 4th International Conference on Science and Technology (ICST). :1-5.

Public key cryptography or asymmetric keys are widely used in the implementation of data security on information and communication systems. The RSA algorithm (Rivest, Shamir, and Adleman) is one of the most popular and widely used public key cryptography because of its less complexity. RSA has two main functions namely the process of encryption and decryption process. Digital Signature Algorithm (DSA) is a digital signature algorithm that serves as the standard of Digital Signature Standard (DSS). DSA is also included in the public key cryptography system. DSA has two main functions of creating digital signatures and checking the validity of digital signatures. In this paper, the authors compare the computational times of RSA and DSA with some bits and choose which bits are better used. Then combine both RSA and DSA algorithms to improve data security. From the simulation results, the authors chose RSA 1024 for the encryption process and added digital signatures using DSA 512, so the messages sent are not only encrypted but also have digital signatures for the data authentication process.

2018-03-19
Jacob, C., Rekha, V. R..  2017.  Secured and Reliable File Sharing System with De-Duplication Using Erasure Correction Code. 2017 International Conference on Networks Advances in Computational Technologies (NetACT). :221–228.
An effective storage and management of file systems is very much essential now a days to avoid the wastage of storage space provided by the cloud providers. Data de-duplication technique has been used widely which allows only to store a single copy of a file and thus avoids duplication of file in the cloud storage servers. It helps to reduce the amount of storage space and save bandwidth of cloud service and thus in high cost savings for the cloud service subscribers. Today data that we need to store are in encrypted format to ensure the security. So data encryption by data owners with their own keys makes the de-duplication impossible for the cloud service subscriber as the data encryption with a key converts data into an unidentifiable format called cipher text thus encrypting, even the same data, with different keys may result in different cipher texts. But de-duplication and encryption need to work in hand to hand to ensure secure, authorized and optimized storage. In this paper, we propose a scheme for file-level de-duplication on encrypted files like text, images and even on video files stored in cloud based on the user's privilege set and file privilege set. This paper proposed a de-duplication system which distributes the files across different servers. The system uses an Erasure Correcting Code technique to re-construct the files even if the parts of the files are lost by attacking any server. Thus the proposed system can ensure both the security and reliability of encrypted files.
2018-01-16
Ahmad, M., Shahid, A., Qadri, M. Y., Hussain, K., Qadri, N. N..  2017.  Fingerprinting non-numeric datasets using row association and pattern generation. 2017 International Conference on Communication Technologies (ComTech). :149–155.

Being an era of fast internet-based application environment, large volumes of relational data are being outsourced for business purposes. Therefore, ownership and digital rights protection has become one of the greatest challenges and among the most critical issues. This paper presents a novel fingerprinting technique to protect ownership rights of non-numeric digital data on basis of pattern generation and row association schemes. Firstly, fingerprint sequence is formulated by using secret key and buyer's Unique ID. With the chunks of these sequences and by applying the Fibonacci series, we select some rows. The selected rows are candidates of fingerprinting. The primary key of selected row is protected using RSA encryption; after which a pattern is designed by randomly choosing the values of different attributes of datasets. The encryption of primary key leads to develop an association between original and fake pattern; creating an ease in fingerprint detection. Fingerprint detection algorithm first finds the fake rows and then extracts the fingerprint sequence from the fake attributes, hence identifying the traitor. Some most important features of the proposed approach is to overcome major weaknesses such as error tolerance, integrity and accuracy in previously proposed fingerprinting techniques. The results show that technique is efficient and robust against several malicious attacks.