Biblio
Software vulnerabilities are weaknesses in software systems that can have serious consequences when exploited. Examples of side effects include unauthorized authentication, data breaches, and financial losses. Due to the nature of the software industry, companies are increasingly pressured to deploy software as quickly as possible, leading to a large number of undetected software vulnerabilities. Static code analysis, with the support of Static Analysis Tools (SATs), can generate security alerts that highlight potential vulnerabilities in an application's source code. Software Metrics (SMs) have also been used to predict software vulnerabilities, usually with the support of Machine Learning (ML) classification algorithms. Several datasets are available to support the development of improved software vulnerability detection techniques. However, they suffer from the same issues: they are either outdated or use a single type of information. In this paper, we present a methodology for collecting software vulnerabilities from known vulnerability databases and enhancing them with static information (namely SAT alerts and SMs). The proposed methodology aims to define a mechanism capable of more easily updating the collected data.
Software developers can use diverse techniques and tools to reduce the number of vulnerabilities, but the effectiveness of existing solutions in real projects is questionable. For example, Static Analysis Tools (SATs) report potential vulnerabilities by analyzing code patterns, and Software Metrics (SMs) can be used to predict vulnerabilities based on high-level characteristics of the code. In theory, both approaches can be applied from the early stages of the development process, but it is well known that they fail to detect critical vulnerabilities and raise a large number of false alarms. This paper studies the hypothesis of using Machine Learning (ML) to combine alerts from SATs with SMs to predict vulnerabilities in a large software project (under development for many years). In practice, we use four ML algorithms, alerts from two SATs, and a large number of SMs to predict whether a source code file is vulnerable or not (binary classification) and to predict the vulnerability category (multiclass classification). Results show that one can achieve either high precision or high recall, but not both at the same time. To understand the reason, we analyze and compare snippets of source code, demonstrating that vulnerable and non-vulnerable files share similar characteristics, making it hard to distinguish vulnerable from non-vulnerable code based on SAT alerts and SMs.
Context: Software security is an imperative aspect of software quality. Early detection of vulnerable code during development can better ensure the security of the codebase and minimize testing efforts. Although traditional software metrics are used for early detection of vulnerabilities, they do not clearly address the granularity level of the issue to precisely pinpoint vulnerabilities. The goal of this study is to employ method-level traceable patterns (nano-patterns) in vulnerability prediction and empirically compare their performance with traditional software metrics. The concept of nano-patterns is similar to design patterns, but these constructs can be automatically recognized and extracted from source code. If nano-patterns can better predict vulnerable methods compared to software metrics, they can be used in developing vulnerability prediction models with better accuracy. Aims: This study explores the performance of method-level patterns in vulnerability prediction. We also compare them with method-level software metrics. Method: We studied vulnerabilities reported for two major releases of Apache Tomcat (6 and 7), Apache CXF, and two stand-alone Java web applications. We used three machine learning techniques to predict vulnerabilities using nano-patterns as features. We applied the same techniques using method-level software metrics as features and compared their performance with nano-patterns. Results: We found that nano-patterns show lower false negative rates for classifying vulnerable methods (for Tomcat 6, 21% vs 34.7%) and therefore, have higher recall in predicting vulnerable code than the software metrics used. On the other hand, software metrics show higher precision than nano-patterns (79.4% vs 76.6%). Conclusion: In summary, we suggest developers use nano-patterns as features for vulnerability prediction to augment existing approaches as these code constructs outperform standard metrics in terms of prediction recall.
Confidentiality, Integrity, and Availability are principal keys to build any secure software. Considering the security principles during the different software development phases would reduce software vulnerabilities. This paper measures the impact of the different software quality metrics on Confidentiality, Integrity, or Availability for any given object-oriented PHP application, which has a list of reported vulnerabilities. The National Vulnerability Database was used to provide the impact score on confidentiality, integrity, and availability for the reported vulnerabilities on the selected applications. This paper includes a study for these scores and its correlation with 25 code metrics for the given vulnerable source code. The achieved results were able to correlate 23.7% of the variability in `Integrity' to four metrics: Vocabulary Used in Code, Card and Agresti, Intelligent Content, and Efferent Coupling metrics. The Length (Halstead metric) could alone predict about 24.2 % of the observed variability in ` Availability'. The results indicate no significant correlation of `Confidentiality' with the tested code metrics.
The "aging" phenomenon occurs after the long-term running of software, with the fault rate rising and running efficiency dropping. As there is no corresponding testing type for this phenomenon among conventional software tests, "software runtime accumulative testing" is proposed. Through analyzing several examples of software aging causing serious accidents, software is placed in the system environment required for running and the occurrence mechanism of software aging is analyzed. In addition, corresponding testing contents and recommended testing methods are designed with regard to all factors causing software aging, and the testing process and key points of testing requirement analysis for carrying out runtime accumulative testing are summarized, thereby providing a method and guidance for carrying out "software runtime accumulative testing" in software engineering.
Predicting software faults before software testing activities can help rational distribution of time and resources. Software metrics are used for software fault prediction due to their close relationship with software faults. Thanks to the non-linear fitting ability, Neural networks are increasingly used in the prediction model. We first filter metric set of the embedded software by statistical methods to reduce the dimensions of model input. Then we build a back propagation neural network with simple structure but good performance and apply it to two practical embedded software projects. The verification results show that the model has good ability to predict software faults.
Testing which is an indispensable part of software engineering is itself an art and science which emerged as a discipline over a period. On testing, if defects are found, testers diminish the risk by providing the awareness of defects and solutions to deal with them before release. If testing does not find any defects, testing assure that under certain conditions the system functions correctly. To guarantee that enough testing has been done, major risk areas need to be tested. We have to identify the risks, analyse and control them. We need to categorize the risk items to decide the extent of testing to be covered. Also, Implementation of structured metrics is lagging in software testing. Efficient metrics are necessary to evaluate, manage the testing process and make testing a part of engineering discipline. This paper proposes the usage of risk based testing using FMEA technique and provides an ideal set of metrics which provides a way to ensure effective testing process.
In transient distributed cloud computing environment, software is vulnerable to attack, which leads to software functional completeness, so it is necessary to carry out functional testing. In order to solve the problem of high overhead and high complexity of unsupervised test methods, an intelligent evaluation method for transient analysis software function testing based on active depth learning algorithm is proposed. Firstly, the active deep learning mathematical model of transient analysis software function test is constructed by using association rule mining method, and the correlation dimension characteristics of software function failure are analyzed. Then the reliability of the software is measured by the spectral density distribution method of software functional completeness. The intelligent evaluation model of transient analysis software function testing is established in the transient distributed cloud computing environment, and the function testing and reliability intelligent evaluation are realized. Finally, the performance of the transient analysis software is verified by the simulation experiment. The results show that the accuracy of the software functional integrity positioning is high and the intelligent evaluation of the transient analysis software function testing has a good self-adaptability by using this method to carry out the function test of the transient analysis software. It ensures the safe and reliable operation of the software.
Software vulnerabilities often remain hidden until an attacker exploits the weak/insecure code. Therefore, testing the software from a vulnerability discovery perspective becomes challenging for developers if they do not inspect their code thoroughly (which is time-consuming). We propose that vulnerability prediction using certain software metrics can support the testing process by identifying vulnerable code-components (e.g., functions, classes, etc.). Once a code-component is predicted as vulnerable, the developers can focus their testing efforts on it, thereby avoiding the time/effort required for testing the entire application. The current paper presents a study that compares how software metrics perform as vulnerability predictors for software projects developed in two different languages (Java vs Python). The goal of this research is to analyze the vulnerability prediction performance of software metrics for different programming languages. We designed and conducted experiments on security vulnerabilities reported for three Java projects (Apache Tomcat 6, Tomcat 7, Apache CXF) and two Python projects (Django and Keystone). In this paper, we focus on a specific type of code component: Functions. We apply Machine Learning models for predicting vulnerable functions. Overall results show that software metrics-based vulnerability prediction is more useful for Java projects than Python projects (i.e., software metrics when used as features were able to predict Java vulnerable functions with a higher recall and precision compared to Python vulnerable functions prediction).
{Information and Communications Technology (ICT) have rationalized government services into a more efficient and transparent government. However, a large part of the government services remained constant in the manual process due to the high cost of ICT. The purpose of this paper is to explore the role of e-governance and ICT in the legislative management of municipalities in the Philippines. This study adopted the phases of Princeton Project Management Methodology (PPMM) as the approach in the development of LeMTrac. This paper utilized the developmental- quantitative research design involving two (2) sets of respondents, which are the end-users and IT experts. Majority of the respondents perceived that the system as "highly acceptable" with an average Likert score of 4.72 for the ISO 9126 Software quality metric Usability. The findings also reveal that the integration of LeMTrac within the Sangguniang Bayan (SB) Office in the Municipal Local Government Units (LGU) of Nabua and Bula, Camarines Sur provided better accessibility, security, and management of documents.
As trust becomes increasingly important in the software domain. Due to its complex composite concept, people face great challenges, especially in today's dynamic and constantly changing internet technology. In addition, measuring the software trustworthiness correctly and effectively plays a significant role in gaining users trust in choosing different software. In the context of security, trust is previously measured based on the vulnerability time occurrence to predict the total number of vulnerabilities or their future occurrence time. In this study, we proposed a new unified index called "loss speed index" that integrates the most important variables of software security such as vulnerability occurrence time, number and severity loss, which are used to evaluate the overall software trust measurement. Based on this new definition, a new model called software trustworthy security growth model (STSGM) has been proposed. This paper also aims at filling the gap by addressing the severity of vulnerabilities and proposed a vulnerability severity prediction model, the results are further evaluated by STSGM to estimate the future loss speed index. Our work has several features such as: (1) It is used to predict the vulnerability severity/type in future, (2) Unlike traditional evaluation methods like expert scoring, our model uses historical data to predict the future loss speed of software, (3) The loss metric value is used to evaluate the risk associated with different software, which has a direct impact on software trustworthiness. Experiments performed on real software vulnerability datasets and its results are analyzed to check the correctness and effectiveness of the proposed model.
Software metrics help developers discover and fix mistakes. However, despite promising empirical evidence, vulnerability discovery metrics are seldom relied upon in practice. In prior research, the effectiveness of these metrics has typically been expressed using precision and recall of a prediction model that uses the metrics as explanatory variables. These prediction models, being black boxes, may not be perceived as useful by developers. However, by systematically interpreting the models and metrics, we can provide developers with nuanced insights about factors that have led to security mistakes in the past. In this paper, we present a preliminary approach to using vulnerability discovery metrics to provide insightful feedback to developers as they engineer software. We collected ten metrics (churn, collaboration centrality, complexity, contribution centrality, nesting, known offender, source lines of code, \# inputs, \# outputs, and \# paths) from six open-source projects. We assessed the generalizability of the metrics across two contextual dimensions (application domain and programming language) and between projects within a domain, computed thresholds for the metrics using an unsupervised approach from literature, and assessed the ability of these unsupervised thresholds to classify risk from historical vulnerabilities in the Chromium project. The observations from this study feeds into our ongoing research to automatically aggregate insights from the various analyses to generate natural language feedback on security. We hope that our approach to generate automated feedback will accelerate the adoption of research in vulnerability discovery metrics.
How to evaluate software reliability based on historical data of embedded software projects is one of the problems we have to face in practical engineering. Therefore, we establish a software reliability evaluation model based on code metrics. This evaluation technique requires the aggregation of software code metrics into project metrics. Statistical value methods, metric distribution methods, and econometric methods are commonly-used aggregation methods. What are the differences between these methods in the software reliability evaluation process, and which methods can improve the accuracy of the reliability assessment model we have established are our concerns. In view of these concerns, we conduct an empirical study on the application of software code metric aggregation methods based on actual projects. We find the distribution of code metrics for the projects under study. Using these distribution laws, we optimize the aggregation method of code metrics and improve the accuracy of the software reliability evaluation model.
The purpose of this paper is to analyze all Cloud based Service Models, Continuous Integration, Deployment and Delivery process and propose an Automated Continuous Testing and testing as a service based TestBot and metrics dashboard which will be integrated with all existing automation, bug logging, build management, configuration and test management tools. Recently cloud is being used by organizations to save time, money and efforts required to setup and maintain infrastructure and platform. Continuous Integration and Delivery is in practice nowadays within Agile methodology to give capability of multiple software releases on daily basis and ensuring all the development, test and Production environments could be synched up quickly. In such an agile environment there is need to ramp up testing tools and processes so that overall regression testing including functional, performance and security testing could be done along with build deployments at real time. To support this phenomenon, we researched on Continuous Testing and worked with industry professionals who are involved in architecting, developing and testing the software products. A lot of research has been done towards automating software testing so that testing of software product could be done quickly and overall testing process could be optimized. As part of this paper we have proposed ACT TestBot tool, metrics dashboard and coined 4S quality metrics term to quantify quality of the software product. ACT testbot and metrics dashboard will be integrated with Continuous Integration tools, Bug reporting tools, test management tools and Data Analytics tools to trigger automation scripts, continuously analyze application logs, open defects automatically and generate metrics reports. Defect pattern report will be created to support root cause analysis and to take preventive action.