Santhosh Kumar, B.J, Sanketh Gowda, V.S.
2022.
Detection and Prevention of UDP Reflection Amplification Attack in WSN Using Cumulative Sum Algorithm. 2022 IEEE International Conference on Data Science and Information System (ICDSIS). :1–5.
Wireless sensor networks are used in many areas such as war field surveillance, monitoring of patient, controlling traffic, environmental and building surveillance. Wireless technology, on the other hand, brings a load of new threats with it. Because WSNs communicate across radio frequencies, they are more susceptible to interference than wired networks. The authors of this research look at the goals of WSNs in terms of security as well as DDOS attacks. The majority of techniques are available for detecting DDOS attacks in WSNs. These alternatives, on the other hand, stop the assault after it has begun, resulting in data loss and wasting limited sensor node resources. The study finishes with a new method for detecting the UDP Reflection Amplification Attack in WSN, as well as instructions on how to use it and how to deal with the case.
Muragaa, Wisam H. A.
2022.
The single packet Low-rate DDoS attack detection and prevention in SDN. 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA). :323–328.
The new paradigm software-defined networking (SDN) supports network innovation and makes the control of network operations more agile. The flow table is the main component of SDN switch which contains a set of flow entries that define how new flows are processed. Low-rate distributed denial-of-service (LR-DDoS) attacks are difficult to detect and mitigate because they behave like legitimate users. There are many detection methods for LR DDoS attacks in the literature, but none of these methods detect single-packet LR DDoS attacks. In fact, LR DDoS attackers exploit vulnerabilities in the mechanism of congestion control in TCP to either periodically retransmit burst attack packets for a short time period or to continuously launch a single attack packet at a constant low rate. In this paper, the proposed scheme detects LR-DDoS by examining all incoming packets and filtering the single packets sent from different source IP addresses to the same destination at a constant low rate. Sending single packets at a constant low rate will increase the number of flows at the switch which can make it easily overflowed. After detecting the single attack packets, the proposed scheme prevents LR-DDoS at its early stage by deleting the flows created by these packets once they reach the threshold. According to the results of the experiment, the scheme achieves 99.47% accuracy in this scenario. In addition, the scheme has simple logic and simple calculation, which reduces the overhead of the SDN controller.
Black, Samuel, Kim, Yoohwan.
2022.
An Overview on Detection and Prevention of Application Layer DDoS Attacks. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0791–0800.
Distributed Denial-of-Service (DDoS) attacks aim to cause downtime or a lack of responsiveness for web services. DDoS attacks targeting the application layer are amongst the hardest to catch as they generally appear legitimate at lower layers and attempt to take advantage of common application functionality or aspects of the HTTP protocol, rather than simply send large amounts of traffic like with volumetric flooding. Attacks can focus on functionality such as database operations, file retrieval, or just general backend code. In this paper, we examine common forms of application layer attacks, preventative and detection measures, and take a closer look specifically at HTTP Flooding attacks by the High Orbit Ion Cannon (HOIC) and “low and slow” attacks through slowloris.
Verma, Amandeep, Saha, Rahul.
2022.
Performance Analysis of DDoS Mitigation in Heterogeneous Environments. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :222–230.
Computer and Vehicular networks, both are prone to multiple information security breaches because of many reasons like lack of standard protocols for secure communication and authentication. Distributed Denial of Service (DDoS) is a threat that disrupts the communication in networks. Detection and prevention of DDoS attacks with accuracy is a necessity to make networks safe.In this paper, we have experimented two machine learning-based techniques one each for attack detection and attack prevention. These detection & prevention techniques are implemented in different environments including vehicular network environments and computer network environments. Three different datasets connected to heterogeneous environments are adopted for experimentation. The first dataset is the NSL-KDD dataset based on the traffic of the computer network. The second dataset is based on a simulation-based vehicular environment, and the third CIC-DDoS 2019 dataset is a computer network-based dataset. These datasets contain different number of attributes and instances of network traffic. For the purpose of attack detection AdaBoostM1 classification algorithm is used in WEKA and for attack prevention Logit Model is used in STATA. Results show that an accuracy of more than 99.9% is obtained from the simulation-based vehicular dataset. This is the highest accuracy rate among the three datasets and it is obtained within a very short period of time i.e., 0.5 seconds. In the same way, we use a Logit regression-based model to classify packets. This model shows an accuracy of 100%.
Nascimento, Márcio, Araujo, Jean, Ribeiro, Admilson.
2022.
Systematic review on mitigating and preventing DDoS attacks on IoT networks. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–9.
Internet of Things (IoT) and those protocol CoAP and MQTT has security issues that have entirely changed the security strategy should be utilized and behaved for devices restriction. Several challenges have been observed in multiple domains of security, but Distributed Denial of Service (DDoS) have actually dangerous in IoT that have RT. Thus, the IoT paradigm and those protocols CoAP and MQTT have been investigated to seek whether network services could be efficiently delivered for resources usage, managed, and disseminated to the devices. Internet of Things is justifiably joined with the best practices augmentation to make this task enriched. However, factors behaviors related to traditional networks have not been effectively mitigated until now. In this paper, we present and deep, qualitative, and comprehensive systematic mapping to find the answers to the following research questions, such as, (i) What is the state-of-the-art in IoT security, (ii) How to solve the restriction devices challenges via infrastructure involvement, (iii) What type of technical/protocol/ paradigm needs to be studied, and (iv) Security profile should be taken care of, (v) As the proposals are being evaluated: A. If in simulated/virtualized/emulated environment or; B. On real devices, in which case which devices. After doing a comparative study with other papers dictate that our work presents a timely contribution in terms of novel knowledge toward an understanding of formulating IoT security challenges under the IoT restriction devices take care.
ISSN: 2166-0727
Manoj, K. Sai.
2022.
DDOS Attack Detection and Prevention using the Bat Optimized Load Distribution Algorithm in Cloud. 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC). :633–642.
Cloud computing provides a great platform for the users to utilize the various computational services in order accomplish their requests. However it is difficult to utilize the computational storage services for the file handling due to the increased protection issues. Here Distributed Denial of Service (DDoS) attacks are the most commonly found attack which will prevent from cloud service utilization. Thus it is confirmed that the DDoS attack detection and load balancing in cloud are most extreme issues which needs to be concerned more for the improved performance. This attained in this research work by measuring up the trust factors of virtual machines in order to predict the most trustable VMs which will be combined together to form the trustable source vector. After trust evaluation, in this work Bat algorithm is utilized for the optimal load distribution which will predict the optimal VM resource for the task allocation with the concern of budget. This method is most useful in the process of detecting the DDoS attacks happening on the VM resources. Finally prevention of DDOS attacks are performed by introducing the Fuzzy Extreme Learning Machine Classifier which will learn the cloud resource setup details based on which DDoS attack detection can be prevented. The overall performance of the suggested study design is performed in a Java simulation model to demonstrate the superiority of the proposed algorithm over the current research method.
Das, Soumyajit, Dayam, Zeeshaan, Chatterjee, Pinaki Sankar.
2022.
Application of Random Forest Classifier for Prevention and Detection of Distributed Denial of Service Attacks. 2022 OITS International Conference on Information Technology (OCIT). :380–384.
A classification issue in machine learning is the issue of spotting Distributed Denial of Service (DDos) attacks. A Denial of Service (DoS) assault is essentially a deliberate attack launched from a single source with the implied intent of rendering the target's application unavailable. Attackers typically aims to consume all available network bandwidth in order to accomplish this, which inhibits authorized users from accessing system resources and denies them access. DDoS assaults, in contrast to DoS attacks, include several sources being used by the attacker to launch an attack. At the network, transportation, presentation, and application layers of a 7-layer OSI architecture, DDoS attacks are most frequently observed. With the help of the most well-known standard dataset and multiple regression analysis, we have created a machine learning model in this work that can predict DDoS and bot assaults based on traffic.
Chavan, Neeta, Kukreja, Mohit, Jagwani, Gaurav, Nishad, Neha, Deb, Namrata.
2022.
DDoS Attack Detection and Botnet Prevention using Machine Learning. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1159–1163.
One of the major threats in the cyber security and networking world is a Distributed Denial of Service (DDoS) attack. With massive development in Science and Technology, the privacy and security of various organizations are concerned. Computer Intrusion and DDoS attacks have always been a significant issue in networked environments. DDoS attacks result in non-availability of services to the end-users. It interrupts regular traffic flow and causes a flood of flooded packets, causing the system to crash. This research presents a Machine Learning-based DDoS attack detection system to overcome this challenge. For the training and testing purpose, we have used the NSL-KDD Dataset. Logistic Regression Classifier, Support Vector Machine, K Nearest Neighbour, and Decision Tree Classifier are examples of machine learning algorithms which we have used to train our model. The accuracy gained are 90.4, 90.36, 89.15 and 82.28 respectively. We have added a feature called BOTNET Prevention, which scans for Phishing URLs and prevents a healthy device from being a part of the botnet.
ISSN: 2575-7288
Tehaam, Muhammad, Ahmad, Salman, Shahid, Hassan, Saboor, Muhammad Suleman, Aziz, Ayesha, Munir, Kashif.
2022.
A Review of DDoS Attack Detection and Prevention Mechanisms in Clouds. 2022 24th International Multitopic Conference (INMIC). :1–6.
Cloud provides access to shared pool of resources like storage, networking, and processing. Distributed denial of service attacks are dangerous for Cloud services because they mainly target the availability of resources. It is important to detect and prevent a DDoS attack for the continuity of Cloud services. In this review, we analyze the different mechanisms of detection and prevention of the DDoS attacks in Clouds. We identify the major DDoS attacks in Clouds and compare the frequently-used strategies to detect, prevent, and mitigate those attacks that will help the future researchers in this area.
ISSN: 2049-3630