Biblio
Content Delivery Networks(CDN) is a standout amongst the most encouraging innovations that upgrade performance for its clients' websites by diverting web demands from browsers to topographically dispersed CDN surrogate nodes. However, due to the variable nature of CDN, it suffers from various security and resource allocation issues. The most common attack which is used to bring down a whole network as well as CDN without even finding a loophole in the security is DDoS. In this proposal, we proposed a distributed virtual honeypot model for diminishing DDoS attacks and prevent intrusion in securing CDN. Honeypots are specially utilized to imitate the primary server with the goal that the attack is alleviated to the fake rather than the main server. Our proposed layer based model utilizes honeypot to be more effective reducing the cost of the system as well as maintaining the smooth delivery in geographically dispersed servers without performance degradation.
Distributed Denial of Service (DDoS) attacks have two defense perspectives firstly, to defend your network, resources and other information assets from this disastrous attack. Secondly, to prevent your network to be the part of botnet (botforce) bondage to launch attacks on other networks and resources mainly be controlled from a control center. This work focuses on the development of a botnet prevention system for Internet of Things (IoT) that uses the benefits of both Software Defined Networking (SDN) and Distributed Blockchain (DBC). We simulate and analyze that using blockchain and SDN, how can detect and mitigate botnets and prevent our devices to play into the hands of attackers.
The server is an important for storing data, collected during the diagnostics of Smart Business Center (SBC) as a subsystem of Industrial Internet of Things including sensors, network equipment, components for start and storage of monitoring programs and technical diagnostics. The server is exposed most often to various kind of attacks, in particular, aimed at processor, interface system, random access memory. The goal of the paper is analyzing the methods of the SBC server protection from malicious actions, as well as the development and investigation of the Markov model of the server's functioning in the SBC network, taking into account the impact of DDoS-attacks.
The ever rising attacks on IT infrastructure, especially on networks has become the cause of anxiety for the IT professionals and the people venturing in the cyber-world. There are numerous instances wherein the vulnerabilities in the network has been exploited by the attackers leading to huge financial loss. Distributed denial of service (DDoS) is one of the most indirect security attack on computer networks. Many active computer bots or zombies start flooding the servers with requests, but due to its distributed nature throughout the Internet, it cannot simply be terminated at server side. Once the DDoS attack initiates, it causes huge overhead to the servers in terms of its processing capability and service delivery. Though, the study and analysis of request packets may help in distinguishing the legitimate users from among the malicious attackers but such detection becomes non-viable due to continuous flooding of packets on servers and eventually leads to denial of service to the authorized users. In the present research, we propose traffic flow and flow count variable based prevention mechanism with the difference in homogeneity. Its simplicity and practical approach facilitates the detection of DDoS attack at the early stage which helps in prevention of the attack and the subsequent damage. Further, simulation result based on different instances of time has been shown on T-value including generation of simple and harmonic homogeneity for observing the real time request difference and gaps.
Distributed Denial of Service (DDoS) strike is a malevolent undertaking to irritate regular action of a concentrated on server, organization or framework by overwhelming the goal or its incorporating establishment with a flood of Internet development. DDoS ambushes achieve feasibility by utilizing different exchanged off PC structures as wellsprings of strike action. Mishandled machines can join PCs and other masterminded resources, for instance, IoT contraptions. From an anomalous express, a DDoS attack looks like a vehicle convergence ceasing up with the road, shielding standard action from meeting up at its pined for objective.
Protection from DDoS-attacks is one of the most urgent problems in the world of network technologies. And while protect systems has algorithms for detection and preventing DDoS attacks, there are still some unresolved problems. This article is devoted to the DDoS-attack called Pulse Wave. Providing a brief introduction to the world of network technologies and DDoS-attacks, in particular, aims at the algorithm for protecting against DDoS-attack Pulse Wave. The main goal of this article is the implementation of traffic classifier that adds rules for infected computers to put them into a separate queue with limited bandwidth. This approach reduces their load on the service and, thus, firewall neutralises the attack.
The Internet of Things (IoT) vulnerabilities provides an ideal target for botnets, making them a major contributor in the increased number of Distributed Denial of Service (DDoS) attacks. The increase in DDoS attacks has made it important to address the consequences it implies on the IoT industry being one of the major causes. The aim of this paper is to provide an analysis of the attempts to prevent DDoS attacks, mainly at a network level. The sensibility of these solutions is extracted from their impact in resolving IoT vulnerabilities. It is evident from this review that there is no perfect solution yet for IoT security, this field still has many opportunities for research and development.
Everyday., the DoS/DDoS attacks are increasing all over the world and the ways attackers are using changing continuously. This increase and variety on the attacks are affecting the governments, institutions, organizations and corporations in a bad way. Every successful attack is causing them to lose money and lose reputation in return. This paper presents an introduction to a method which can show what the attack and where the attack based on. This is tried to be achieved with using clustering algorithm DBSCAN on network traffic because of the change and variety in attack vectors.
In recent years, the attacks on systems have increased and among such attack is Distributed Denial of Service (DDoS) attack. The path identifiers (PIDs) used for inter-domain routing are static, which makes it easier the attack easier. To address this vulnerability, this paper addresses the usage of Dynamic Path Identifiers (D-PIDs) for routing. The PID of inter-domain path connector is kept oblivious and changes dynamically, thus making it difficult to attack the system. The prototype designed with major components like client, server and router analyses the outcome of D-PID usage instead of PIDs. The results show that, DDoS attacks can be effectively prevented if Dynamic Path Identifiers (D-PIDs) are used instead of Static Path Identifiers (PIDs).
Denial-of-Service attack (DoS attack) is an attack on network in which an attacker tries to disrupt the availability of network resources by overwhelming the target network with attack packets. In DoS attack it is typically done using a single source, and in a Distributed Denial-of-Service attack (DDoS attack), like the name suggests, multiple sources are used to flood the incoming traffic of victim. Typically, such attacks use vulnerabilities of Domain Name System (DNS) protocol and IP spoofing to disrupt the normal functioning of service provider or Internet user. The attacks involving DNS, or attacks exploiting vulnerabilities of DNS are known as DNS based DDOS attacks. Many of the proposed DNS based DDoS solutions try to prevent/mitigate such attacks using some intelligent non-``network layer'' (typically application layer) protocols. Utilizing the flexibility and programmability aspects of Software Defined Networks (SDN), via this proposed doctoral research it is intended to make underlying network intelligent enough so as to prevent DNS based DDoS attacks.
Distributed denial of service (DDoS) attacks is a serious cyberattack that exhausts target machine's processing capacity by sending a huge number of packets from hijacked machines. To minimize resource consumption caused by DDoS attacks, filtering attack packets at source machines is the best approach. Although many studies have explored the detection of DDoS attacks, few studies have proposed DDoS attack prevention schemes that work at source machines. We propose a reliable, lightweight, transparent, and flexible DDoS attack prevention scheme that works at source machines. In this scheme, we employ a hypervisor with a packet filtering mechanism on each managed machine to allow the administrator to easily and reliably suppress packet transmissions. To make the proposed scheme lightweight and transparent, we exploit a thin hypervisor that allows pass-through access to hardware (except for network devices) from the operating system, thereby reducing virtualization overhead and avoiding compromising user experience. To make the proposed scheme flexible, we exploit a configurable packet filtering mechanism with a guaranteed safe code execution mechanism that allows the administrator to provide a filtering policy as executable code. In this study, we implemented the proposed scheme using BitVisor and the Berkeley Packet Filter. Experimental results show that the proposed scheme can suppress arbitrary packet transmissions with negligible latency and throughput overhead compared to a bare metal system without filtering mechanisms.
The convergence of access networks in the fifth-generation (5G) evolution promises multi-tier networking infrastructures for the successes of various applications realizing the Internet-of-Everything era. However, in this context, the support of a massive number of connected devices also opens great opportunities for attackers to exploit these devices in illegal actions against their victims, especially within the distributed denial-of-services (DDoS) attacks. Nowadays, DDoS prevention still remains an open issue in term of performance improvement although there is a significant number of existing solutions have been proposed in the literature. In this paper, we investigate the advances of multi-access edge computing (MAEC), which is considered as one of the most important emerging technologies in 5G networks, in order to provide an effective DDoS prevention solution (referred to be MAEC-X). The proposed MAEC-X architecture and mechanism are developed as well as proved its effectiveness against DDoS attacks through intensive security analysis.
Software Defined Networking (SDN) is the new promise towards an easily configured and remotely controlled network. Based on Centralized control, SDN technology has proved its positive impact on the world of network communications from different aspects. Security in SDN, as in traditional networks, is an essential feature that every communication system should possess. In this paper, we propose an SDN security design approach, which strikes a good balance between network performance and security features. We show how such an approach can be used to prevent DDoS attacks targeting either the controller or the different hosts in the network, and how to trace back the source of the attack. The solution lies in introducing a third plane, the security plane, in addition to the data plane, which is responsible for forwarding data packets between SDN switches, and parallel to the control plane, which is responsible for rule and data exchange between the switches and the SDN controller. The security plane is designed to exchange security-related data between a third party agent on the switch and a third party software module alongside the controller. Our evaluation shows the capability of the proposed system to enforce different levels of real-time user-defined security with low overhead and minimal configuration.
Wireless sensor network is a low cost network to solve many of the real world problems. These sensor nodes used to deploy in the hostile or unattended areas to sense and monitor the atmospheric situations such as motion, pressure, sound, temperature and vibration etc. The sensor nodes have low energy and low computing power, any security scheme for wireless sensor network must not be computationally complex and it should be efficient. In this paper we introduced a secure routing protocol for WSNs, which is able to prevent the network from DDoS attack. In our methodology we scan the infected nodes using the proposed algorithm and block that node from any further activities in the network. To protect the network we use intrusion prevention scheme, where specific nodes of the network acts as IPS node. These nodes operate in their radio range for the region of the network and scan the neighbors regularly. When the IPS node find a misbehavior node which is involves in frequent message passing other than UDP and TCP messages, IPS node blocks the infected node and also send the information to all genuine sender nodes to change their routes. All simulation work has been done using NS 2.35. After simulation the proposed scheme gives feasible results to protect the network against DDoS attack. The performance parameters have been improved after applying the security mechanism on an infected network.
Communication networks can be the targets of organized and distributed attacks such as flooding-type DDOS attack in which malicious users aim to cripple a network server or a network domain. For the attack to have a major effect on the network, malicious users must act in a coordinated and time correlated manner. For instance, the members of the flooding attack increase their message transmission rates rapidly but also synchronously. Even though detection and prevention of the flooding attacks are well studied at network and transport layers, the emergence and wide deployment of new systems such as VoIP (Voice over IP) have turned flooding attacks at the session layer into a new defense challenge. In this study a structured sparsity based group anomaly detection system is proposed that not only can detect synchronized attacks, but also identify the malicious groups from normal users by jointly estimating their members, structure, starting and end points. Although we mainly focus on security on SIP (Session Initiation Protocol) servers/proxies which are widely used for signaling in VoIP systems, the proposed scheme can be easily adapted for any type of communication network system at any layer.
Software Defined Networking (SDN) has proved to be a promising approach for creating next generation software based network ecosystems. It has provided us with a centralized network provision, a holistic management plane and a well-defined level of abstraction. But, at the same time brings forth new security and management challenges. Research in the field of SDN is primarily focused on reconfiguration, forwarding and network management issues. However in recent times the interest has moved to tackling security and maintenance issues. This work is based on providing a means to mitigate security challenges in an SDN environment from a DDoS attack based point of view. This paper introduces a Multi-Agent based intrusion prevention and mitigation architecture for SDN. Thus allowing networks to govern their behavior and take appropriate measures when the network is under attack. The architecture is evaluated against filter based intrusion prevention architectures to measure efficiency and resilience against DDoS attacks and false policy based attacks.