Visible to the public Biblio

Filters: Keyword is encrypted domain  [Clear All Filters]
2020-03-18
Shah, Meet D., Mohanty, Manoranjan, Atrey, Pradeep K..  2019.  SecureCSearch: Secure Searching in PDF Over Untrusted Cloud Servers. 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). :347–352.
The usage of cloud for data storage has become ubiquitous. To prevent data leakage and hacks, it is common to encrypt the data (e.g. PDF files) before sending it to a cloud. However, this limits the search for specific files containing certain keywords over an encrypted cloud data. The traditional method is to take down all files from a cloud, store them locally, decrypt and then search over them, defeating the purpose of using a cloud. In this paper, we propose a method, called SecureCSearch, to perform keyword search operations on the encrypted PDF files over cloud in an efficient manner. The proposed method makes use of Shamir's Secret Sharing scheme in a novel way to create encrypted shares of the PDF file and the keyword to search. We show that the proposed method maintains the security of the data and incurs minimal computation cost.
2020-03-04
Puteaux, Pauline, Puech, William.  2019.  Image Analysis and Processing in the Encrypted Domain. 2019 IEEE International Conference on Image Processing (ICIP). :3020–3022.

In this research project, we are interested by finding solutions to the problem of image analysis and processing in the encrypted domain. For security reasons, more and more digital data are transferred or stored in the encrypted domain. However, during the transmission or the archiving of encrypted images, it is often necessary to analyze or process them, without knowing the original content or the secret key used during the encryption phase. We propose to work on this problem, by associating theoretical aspects with numerous applications. Our main contributions concern: data hiding in encrypted images, correction of noisy encrypted images, recompression of crypto-compressed images and secret image sharing.

2019-09-26
Kodera, Y., Kuribayashi, M., Kusaka, T., Nogami, Y..  2018.  Advanced Searchable Encryption: Keyword Search for Matrix-Type Storage. 2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW). :292-297.
The recent development of IoT technologies and cloud storages, many types of information including private information have been gradually outsourced. For such a situation, new convenient functionalities such as arithmetic and keyword search on ciphertexts are required to allow users to retrieve information without leaking any information. Especially, searchable encryptions have been paid much attention to realize a keyword search on an encrypted domain. In addition, an architecture of searchable symmetric encryption (SSE) is a suitable and efficient solution for data outsourcing. In this paper, we focus on an SSE scheme which employs a secure index for searching a keyword with optimal search time. In the conventional studies, it has been widely considered that the scheme searches whether a queried keyword is contained in encrypted documents. On the other hand, we additionally take into account the location of a queried keyword in documents by targeting a matrix-type data format. It enables a manager to search personal information listed per line or column in CSV-like format data.
2018-01-16
Ugwuoke, C., Erkin, Z., Lagendijk, R. L..  2017.  Privacy-safe linkage analysis with homomorphic encryption. 2017 25th European Signal Processing Conference (EUSIPCO). :961–965.

Genetic data are important dataset utilised in genetic epidemiology to investigate biologically coded information within the human genome. Enormous research has been delved into in recent years in order to fully sequence and understand the genome. Personalised medicine, patient response to treatments and relationships between specific genes and certain characteristics such as phenotypes and diseases, are positive impacts of studying the genome, just to mention a few. The sensitivity, longevity and non-modifiable nature of genetic data make it even more interesting, consequently, the security and privacy for the storage and processing of genomic data beg for attention. A common activity carried out by geneticists is the association analysis between allele-allele, or even a genetic locus and a disease. We demonstrate the use of cryptographic techniques such as homomorphic encryption schemes and multiparty computations, how such analysis can be carried out in a privacy friendly manner. We compute a 3 × 3 contingency table, and then, genome analyses algorithms such as linkage disequilibrium (LD) measures, all on the encrypted domain. Our computation guarantees privacy of the genome data under our security settings, and provides up to 98.4% improvement, compared to an existing solution.