Visible to the public Biblio

Filters: Keyword is copyright protection  [Clear All Filters]
2023-06-23
Ke, Zehui, Huang, Hailiang, Liang, Yingwei, Ding, Yi, Cheng, Xin, Wu, Qingyao.  2022.  Robust Video watermarking based on deep neural network and curriculum learning. 2022 IEEE International Conference on e-Business Engineering (ICEBE). :80–85.

With the rapid development of multimedia and short video, there is a growing concern for video copyright protection. Some work has been proposed to add some copyright or fingerprint information to the video to trace the source of the video when it is stolen and protect video copyright. This paper proposes a video watermarking method based on a deep neural network and curriculum learning for watermarking of sliced videos. The first frame of the segmented video is perturbed by an encoder network, which is invisible and can be distinguished by the decoder network. Our model is trained and tested on an online educational video dataset consisting of 2000 different video clips. Experimental results show that our method can successfully discriminate most watermarked and non-watermarked videos with low visual disturbance, which can be achieved even under a relatively high video compression rate(H.264 video compress with CRF 32).

2023-06-22
Elbasi, Ersin.  2022.  A Robust Information Hiding Scheme Using Third Decomposition Layer of Wavelet Against Universal Attacks. 2022 IEEE World AI IoT Congress (AIIoT). :611–616.
Watermarking is one of the most common data hiding techniques for multimedia elements. Broadcasting, copy control, copyright protection and authentication are the most frequently used application areas of the watermarking. Secret data can be embedded into the cover image with changing the values of the pixels in spatial domain watermarking. In addition to this method, cover image can be converted into one of the transformation such as Discrete Wavelet Transformation (DWT), Discrete Cousin Transformation (DCT) and Discrete Fourier Transformation (DFT). Later on watermark can be embedded high frequencies of transformation coefficients. In this work, cover image transformed one, two and three level DWT decompositions. Binary watermark is hided into the low and high frequencies in each decomposition. Experimental results show that watermarked image is robust, secure and resist against several geometric attacks especially JPEG compression, Gaussian noise and histogram equalization. Peak Signal-to-Noise Ratio (PSNR) and Similarity Ratio (SR) values show very optimal results when we compare the other frequency and spatial domain algorithms.
2022-10-03
Zhang, Shimei, Yan, Pingyan.  2021.  The Challenge of Copyright Protection of Artificial Intelligence Products to the Field of Intellectual Property Legislation Based on Information Technology. 2021 International Conference on Forthcoming Networks and Sustainability in AIoT Era (FoNeS-AIoT). :275–279.
The rise of artificial intelligence plays an important role in social progress and economic development, which is a hot topic in the Internet industry. In the past few years, the Chinese government has vigorously increased policy support to promote the golden age of artificial intelligence. However, with the rapid development of artificial intelligence, the copyright protection and intellectual property legislation of artificial intelligence products have brought some challenges.
2022-09-09
White, Riley, Sprague, Nathan.  2021.  Deep Metric Learning for Code Authorship Attribution and Verification. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). :1089—1093.
Code authorship identification can assist in identifying creators of malware, identifying plagiarism, and giving insights in copyright infringement cases. Taking inspiration from facial recognition work, we apply recent advances in metric learning to the problem of authorship identification and verification. The metric learning approach makes it possible to measure similarity in the learned embedding space. Access to a discriminative similarity measure allows for the estimation of probability distributions that facilitate open-set classification and verification. We extend our analysis to verification based on sets of files, a previously unexplored problem domain in large-scale author identification. On closed-set tasks we achieve competitive accuracies, but do not improve on the state of the art.
2022-03-01
Mishra, Dheerendra, Obaidat, Mohammad S., Mishra, Ankita.  2021.  Privacy Preserving Location-based Content Distribution Framework for Digital Rights Management Systems. 2021 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI). :1–5.
Advancement in network technology provides an opportunity for e-commerce industries to sell digital content. However, multimedia content has the drawback of easy copy and redistribution, which causes rampant piracy. Digital rights management (DRM) systems are developed to address content piracy. Basically, DRM focuses to control content consumption and distribution. In general, to provide copyright protection, DRM system loses flexibility and creates a severe threat to users’ privacy. Moreover, traditional DRM systems are client-server architecture, which cannot handle strategies geographically. These disadvantages discourage the adoption of DRM systems. At the same time, multi-distributor DRM (MD-DRM) system provides a way to facilitate content distribution more effectively. Most of the existing multi-distributor DRM systems are privacy encroaching and do not discuss the useful content distribution framework. To overcome the drawbacks of existing schemes, we propose a privacy-preserving MD-DRM system, which is flexible enough to support location-based content distribution. The proposed scheme maintains a flexible and transparent content distribution without breaching consumer privacy. Besides, the proposed scheme does not violate accountability parameters. This mechanism makes traitor identification possible without violating the privacy rights of authorized consumers.
2021-08-31
Ge, Chonghui, Sun, Jian, Sun, Yuxin, Di, Yunlong, Zhu, Yongjin, Xie, Linfeng, Zhang, Yingzhou.  2020.  Reversible Database Watermarking Based on Random Forest and Genetic Algorithm. 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :239—247.
The advancing information technology is playing more and more important role in data mining of relational database.1 The transfer and sharing of databases cause the copyright-related security threats. Database watermarking technology can effectively solve the problem with copyright protection and traceability, which has been attracting researchers' attention. In this paper, we proposed a novel, robust and reversible database watermarking technique, named histogram shifting watermarking based on random forest and genetic algorithm (RF-GAHCSW). It greatly improves the watermark capacity by means of histogram width reduction and eliminates the impact of the prediction error attack. Meanwhile, random forest algorithm is used to select important attributes for watermark embedding, and genetic algorithm is employed to find the optimal secret key for the database grouping and determine the position of watermark embedding to improve the watermark capacity and reduce data distortion. The experimental results show that the robustness of RF-GAHCSW is greatly improved, compared with the original HSW, and the distortion has little effect on the usability of database.
2020-10-16
Al-Haj, Ali, Farfoura, Mahmoud.  2019.  Providing Security for E-Government Document Images Using Digital Watermarking in the Frequency Domain. 2019 5th International Conference on Information Management (ICIM). :77—81.

Many countries around the world have realized the benefits of the e-government platform in peoples' daily life, and accordingly have already made partial implementations of the key e-government processes. However, before full implementation of all potential services can be made, governments demand the deployment of effective information security measures to ensure secrecy and privacy of their citizens. In this paper, a robust watermarking algorithm is proposed to provide copyright protection for e-government document images. The proposed algorithm utilizes two transforms: the Discrete Wavelet Transformation (DWT) and the Singular Value Decomposition (SVD). Experimental results demonstrate that the proposed e-government document images watermarking algorithm performs considerably well compared to existing relevant algorithms.

2020-07-30
Ernawan, Ferda, Kabir, Muhammad Nomani.  2018.  A blind watermarking technique using redundant wavelet transform for copyright protection. 2018 IEEE 14th International Colloquium on Signal Processing Its Applications (CSPA). :221—226.
A digital watermarking technique is an alternative method to protect the intellectual property of digital images. This paper presents a hybrid blind watermarking technique formulated by combining RDWT with SVD considering a trade-off between imperceptibility and robustness. Watermark embedding locations are determined using a modified entropy of the host image. Watermark embedding is employed by examining the orthogonal matrix U obtained from the hybrid scheme RDWT-SVD. In the proposed scheme, the watermark image in binary format is scrambled by Arnold chaotic map to provide extra security. Our scheme is tested under different types of signal processing and geometrical attacks. The test results demonstrate that the proposed scheme provides higher robustness and less distortion than other existing schemes in withstanding JPEG2000 compression, cropping, scaling and other noises.
2018-01-23
Dabas, N., Singh, R. P., Kher, G., Chaudhary, V..  2017.  A novel SVD and online sequential extreme learning machine based watermark method for copyright protection. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.

For the increasing use of internet, it is equally important to protect the intellectual property. And for the protection of copyright, a blind digital watermark algorithm with SVD and OSELM in the IWT domain has been proposed. During the embedding process, SVD has been applied to the coefficient blocks to get the singular values in the IWT domain. Singular values are modulated to embed the watermark in the host image. Online sequential extreme learning machine is trained to learn the relationship between the original coefficient and the corresponding watermarked version. During the extraction process, this trained OSELM is used to extract the embedded watermark logo blindly as no original host image is required during this process. The watermarked image is altered using various attacks like blurring, noise, sharpening, rotation and cropping. The experimental results show that the proposed watermarking scheme is robust against various attacks. The extracted watermark has very much similarity with the original watermark and works good to prove the ownership.