Biblio
In this era of information explosion, conflicts are often encountered when information is provided by multiple sources. Traditional truth discovery task aims to identify the truth the most trustworthy information, from conflicting sources in different scenarios. In this kind of tasks, truth is regarded as a fixed value or a set of fixed values. However, in a number of real-world cases, objective truth existence cannot be ensured and we can only identify single or multiple reliable facts from opinions. Different from traditional truth discovery task, we address this uncertainty and introduce the concept of trustworthy opinion of an entity, treat it as a random variable, and use its distribution to describe consistency or controversy, which is particularly difficult for data which can be numerically measured, i.e. quantitative information. In this study, we focus on the quantitative opinion, propose an uncertainty-aware approach called Kernel Density Estimation from Multiple Sources (KDEm) to estimate its probability distribution, and summarize trustworthy information based on this distribution. Experiments indicate that KDEm not only has outstanding performance on the classical numeric truth discovery task, but also shows good performance on multi-modality detection and anomaly detection in the uncertain-opinion setting.
This study presents spatial analysis of Dengue Fever (DF) outbreak using Geographic Information System (GIS) in the state of Selangor, Malaysia. DF is an Aedes mosquito-borne disease. The aim of the study is to map the spread of DF outbreak in Selangor by producing a risk map while the objective is to identify high risk areas of DF by producing a risk map using GIS tools. The data used was DF dengue cases in 2012 obtained from Ministry of Health, Malaysia. The analysis was carried out using Moran's I, Average Nearest Neighbor (ANN), Kernel Density Estimation (KDE) and buffer analysis using GIS. From the Moran's I analysis, the distribution pattern of DF in Selangor clustered. From the ANN analysis, the result shows a dispersed pattern where the ratio is more than 1. The third analysis was based on KDE to locate the hot spot location. The result shows that some districts are classified as high risk areas which are Ampang, Damansara, Kapar, Kajang, Klang, Semenyih, Sungai Buloh and Petaling. The buffer analysis, area ranges between 200m. to 500m. above sea level shows a clustered pattern where the highest frequent cases in the year are at the same location. It was proven that the analysis based on the spatial statistic, spatial interpolation, and buffer analysis can be used as a method in controlling and locating the DF affection with the aid of GIS.
Cyber systems play a critical role in improving the efficiency and reliability of power system operation and ensuring the system remains within safe operating margins. An adversary can inflict severe damage to the underlying physical system by compromising the control and monitoring applications facilitated by the cyber layer. Protection of critical assets from electronic threats has traditionally been done through conventional cyber security measures that involve host-based and network-based security technologies. However, it has been recognized that highly skilled attacks can bypass these security mechanisms to disrupt the smooth operation of control systems. There is a growing need for cyber-attack-resilient control techniques that look beyond traditional cyber defense mechanisms to detect highly skilled attacks. In this paper, we make the following contributions. We first demonstrate the impact of data integrity attacks on Automatic Generation Control (AGC) on power system frequency and electricity market operation. We propose a general framework to the application of attack resilient control to power systems as a composition of smart attack detection and mitigation. Finally, we develop a model-based anomaly detection and attack mitigation algorithm for AGC. We evaluate the detection capability of the proposed anomaly detection algorithm through simulation studies. Our results show that the algorithm is capable of detecting scaling and ramp attacks with low false positive and negative rates. The proposed model-based mitigation algorithm is also efficient in maintaining system frequency within acceptable limits during the attack period.