Biblio
Deep Neural Networks (DNN) has gained great success in solving several challenging problems in recent years. It is well known that training a DNN model from scratch requires a lot of data and computational resources. However, using a pre-trained model directly or using it to initialize weights cost less time and often gets better results. Therefore, well pre-trained DNN models are valuable intellectual property that we should protect. In this work, we propose DeepTrace, a framework for model owners to secretly fingerprinting the target DNN model using a special trigger set and verifying from outputs. An embedded fingerprint can be extracted to uniquely identify the information of model owner and authorized users. Our framework benefits from both white-box and black-box verification, which makes it useful whether we know the model details or not. We evaluate the performance of DeepTrace on two different datasets, with different DNN architectures. Our experiment shows that, with the advantages of combining white-box and black-box verification, our framework has very little effect on model accuracy, and is robust against different model modifications. It also consumes very little computing resources when extracting fingerprint.
Internet of Things (IoT) is flourishing in several application areas, such as smart cities, smart factories, smart homes, smart healthcare, etc. With the adoption of IoT in critical scenarios, it is crucial to investigate its security aspects. All the layers of IoT are vulnerable to severely disruptive attacks. However, the attacks in IoT Network layer have a high impact on communication between the connected objects. Routing in most of the IoT networks is carried out by IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL). RPL-based IoT offers limited protection against routing attacks. A trust-based approach for routing security is suitable to be integrated with IoT systems due to the resource-constrained nature of devices. This research proposes a trust-based secure routing protocol to provide security against packet dropping attacks in RPL-based IoT networks. IoT networks are dynamic and consist of both static and mobile nodes. Hence the chosen trust metrics in the proposed method also include the mobility-based metrics for trust evaluation. The proposed solution is integrated into RPL as a modified objective function, and the results are compared with the default RPL objective function, MRHOF. The analysis and evaluation of the proposed protocol indicate its efficacy and adaptability in a mobile IoT environment.