Biblio
The United States and European Union have an increasing number of projects that are engaging end-use devices for improved grid capabilities. Areas such as building-to-grid and vehicle-to-grid are simple examples of these advanced capabilities. In this paper, we present an innovative concept study for a ship-to-grid integration. The goal of this study is to simulate a two-way power flow between ship(s) and the grid with GridLAB-D for the port of Kyllini in Greece, where a ship-to-shore interconnection was recently implemented. Extending this further, we explore: (a) the ability of ships to meet their load demand needs, while at berth, by being supplied with energy from the electric grid and thus powering off their diesel engines; and (b) the ability of ships to provide power to critical loads onshore. As a result, the ship-to-grid integration helps (a) mitigate environmental pollutants from the ships' diesel engines and (b) provide resilience to nearby communities during a power disruption due to natural disasters or man-made threats.
Utility networks are part of every nation's critical infrastructure, and their protection is now seen as a high priority objective. In this paper, we propose a threat awareness architecture for critical infrastructures, which we believe will raise security awareness and increase resilience in utility networks. We first describe an investigation of trends and threats that may impose security risks in utility networks. This was performed on the basis of a viewpoint approach that is capable of identifying technical and non-technical issues (e.g., behaviour of humans). The result of our analysis indicated that utility networks are affected strongly by technological trends, but that humans comprise an important threat to them. This provided evidence and confirmed that the protection of utility networks is a multi-variable problem, and thus, requires the examination of information stemming from various viewpoints of a network. In order to accomplish our objective, we propose a systematic threat awareness architecture in the context of a resilience strategy, which ultimately aims at providing and maintaining an acceptable level of security and safety in critical infrastructures. As a proof of concept, we demonstrate partially via a case study the application of the proposed threat awareness architecture, where we examine the potential impact of attacks in the context of social engineering in a European utility company.