Visible to the public Biblio

Found 267 results

Filters: Keyword is graph theory  [Clear All Filters]
2021-09-21
Chai, Yuhan, Qiu, Jing, Su, Shen, Zhu, Chunsheng, Yin, Lihua, Tian, Zhihong.  2020.  LGMal: A Joint Framework Based on Local and Global Features for Malware Detection. 2020 International Wireless Communications and Mobile Computing (IWCMC). :463–468.
With the gradual advancement of smart city construction, various information systems have been widely used in smart cities. In order to obtain huge economic benefits, criminals frequently invade the information system, which leads to the increase of malware. Malware attacks not only seriously infringe on the legitimate rights and interests of users, but also cause huge economic losses. Signature-based malware detection algorithms can only detect known malware, and are susceptible to evasion techniques such as binary obfuscation. Behavior-based malware detection methods can solve this problem well. Although there are some malware behavior analysis works, they may ignore semantic information in the malware API call sequence. In this paper, we design a joint framework based on local and global features for malware detection to solve the problem of network security of smart cities, called LGMal, which combines the stacked convolutional neural network and graph convolutional networks. Specially, the stacked convolutional neural network is used to learn API call sequence information to capture local semantic features and the graph convolutional networks is used to learn API call semantic graph structure information to capture global semantic features. Experiments on Alibaba Cloud Security Malware Detection datasets show that the joint framework gets better results. The experimental results show that the precision is 87.76%, the recall is 88.08%, and the F1-measure is 87.79%. We hope this paper can provide a useful way for malware detection and protect the network security of smart city.
Wang, Duanyi, Shu, Hui, Kang, Fei, Bu, Wenjuan.  2020.  A Malware Similarity Analysis Method Based on Network Control Structure Graph. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :295–300.
Recently, graph-based malware similarity analysis has been widely used in the field of malware detection. However, the wide application of code obfuscation, polymorphism, and deformation changes the structure of malicious code, which brings great challenges to the malware similarity analysis. To solve these problems, in this paper, we present a new approach to malware similarity analysis based on the network control structure graph (NCSG). This method analyzed the behavior of malware by application program interface (API) association and constructed NCSG. The graph could reflect the command-and-control(C&C) logic of malware. Therefore, it can resist the interference of code obfuscation technology. The structural features extracted from NCSG will be used as the basis of similarity analysis for training the detection model. Finally, we tested the dataset constructed from five known malware family samples, and the experimental results showed that the accuracy of this method for malware variation analysis reached 92.75%. In conclusion, the malware similarity analysis based on NCSG has a strong application value for identifying the same family of malware.
2021-09-16
Venkataramanan, Venkatesh, Hahn, Adam, Srivastava, Anurag.  2020.  CP-SAM: Cyber-Physical Security Assessment Metric for Monitoring Microgrid Resiliency. IEEE Transactions on Smart Grid. 11:1055–1065.
Trustworthy and secure operation of the cyber-power system calls for resilience against malicious and accidental failures. The objective of a resilient system is to withstand and recover operation of the system to supply critical loads despite multiple contingencies in the system. To take timely actions, we need to continuously measure the cyberphysical security of the system. We propose a cyber-physical security assessment metric (CP-SAM) based on quantitative factors affecting resiliency and utilizing concepts from graph theoretic analysis, probabilistic model of availability, attack graph metrics, and vulnerabilities across different layers of the microgrid system. These factors are integrated into a single metric using a multi-criteria decision making (MCDM) technique, Choquet Integral to compute CP-SAM. The developed metric will be valuable for i) monitoring the microgrid resiliency considering a holistic cyber-physical model; and ii) enable better decision-making to select best possible mitigation strategies towards resilient microgrid system. Developed CP-SAM can be extended for active distribution system and has been validated in a real-world power-grid test-bed to monitor the microgrid resiliency.
2021-09-09
Samoshina, Anna, Promyslov, Vitaly, Kamesheva, Saniya, Galin, Rinat.  2020.  Application of Cloud Modeling Technologies in Ensuring Cyber Security of APCS. 2020 13th International Conference "Management of Large-Scale System Development" (MLSD). :1–5.
This paper describes the development of a module for calculating security zones in the cloud service of APCS modeling. A mathematical model based on graph theory is used. This allows you to describe access relationships between objects and security policy subjects. A comparative analysis of algorithms for traversing graph vertices is performed in order to select a suitable method for allocating security zones. The implemented algorithm for calculating security zones was added to the cloud service omole.ws.
2021-07-27
Sinha, Ayush, Chakrabarti, Sourin, Vyas, O.P..  2020.  Distributed Grid restoration based on graph theory. 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC). :1–6.
With the emergence of smart grids as the primary means of distribution across wide areas, the importance of improving its resilience to faults and mishaps is increasing. The reliability of a distribution system depends upon its tolerance to attacks and the efficiency of restoration after an attack occurs. This paper proposes a unique approach to the restoration of smart grids under attack by impostors or due to natural calamities via optimal islanding of the grid with primary generators and distributed generators(DGs) into sub-grids minimizing the amount of load shed which needs to be incurred and at the same time minimizing the number of switching operations via graph theory. The minimum load which needs to be shed is computed in the first stage followed by selecting the nodes whose load needs to be shed to achieve such a configuration and then finally deriving the sequence of switching operations required to achieve the configuration. The proposed method is tested against standard IEEE 37-bus and a 1069-bus grid system and the minimum load shed along with the sequencing steps to optimal configuration and time to achieve such a configuration are presented which demonstrates the effectiveness of the method when compared to the existing methods in the field. Moreover, the proposed algorithm can be easily modified to incorporate any other constraints which might arise due to any operational configuration of the grid.
Beyza, Jesus, Bravo, Victor M., Garcia-Paricio, Eduardo, Yusta, Jose M., Artal-Sevil, Jesus S..  2020.  Vulnerability and Resilience Assessment of Power Systems: From Deterioration to Recovery via a Topological Model based on Graph Theory. 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). 4:1–6.
Traditionally, vulnerability is the level of degradation caused by failures or disturbances, and resilience is the ability to recover after a high-impact event. This paper presents a topological procedure based on graph theory to evaluate the vulnerability and resilience of power grids. A cascading failures model is developed by eliminating lines both deliberately and randomly, and four restoration strategies inspired by the network approach are proposed. In the two cases, the degradation and recovery of the electrical infrastructure are quantified through four centrality measures. Here, an index called flow-capacity is proposed to measure the level of network overload during the iterative processes. The developed sequential framework was tested on a graph of 600 nodes and 1196 edges built from the 400 kV high-voltage power system in Spain. The conclusions obtained show that the statistical graph indices measure different topological aspects of the network, so it is essential to combine the results to obtain a broader view of the structural behaviour of the infrastructure.
Fatehi, Nina, Shahhoseini, HadiShahriar.  2020.  A Hybrid Algorithm for Evaluating Trust in Online Social Networks. 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE). :158—162.
The acceleration of extending popularity of Online Social Networks (OSNs) thanks to various services with which they provide people, is inevitable. This is why in OSNs security as a way to protect private data of users to be abused by unauthoritative people has a vital role to play. Trust evaluation is the security approach that has been utilized since the advent of OSNs. Graph-based approaches are among the most popular methods for trust evaluation. However, graph-based models need to employ limitations in the search process of finding trusted paths. This contributes to a reduction in trust accuracy. In this investigation, a learning-based model which with no limitation is able to find reliable users of any target user, is proposed. Experimental results depict 12% improvement in trust accuracy compares to models based on the graph-based approach.
2021-04-27
Piplai, A., Ranade, P., Kotal, A., Mittal, S., Narayanan, S. N., Joshi, A..  2020.  Using Knowledge Graphs and Reinforcement Learning for Malware Analysis. 2020 IEEE International Conference on Big Data (Big Data). :2626—2633.

Machine learning algorithms used to detect attacks are limited by the fact that they cannot incorporate the back-ground knowledge that an analyst has. This limits their suitability in detecting new attacks. Reinforcement learning is different from traditional machine learning algorithms used in the cybersecurity domain. Compared to traditional ML algorithms, reinforcement learning does not need a mapping of the input-output space or a specific user-defined metric to compare data points. This is important for the cybersecurity domain, especially for malware detection and mitigation, as not all problems have a single, known, correct answer. Often, security researchers have to resort to guided trial and error to understand the presence of a malware and mitigate it.In this paper, we incorporate prior knowledge, represented as Cybersecurity Knowledge Graphs (CKGs), to guide the exploration of an RL algorithm to detect malware. CKGs capture semantic relationships between cyber-entities, including that mined from open source. Instead of trying out random guesses and observing the change in the environment, we aim to take the help of verified knowledge about cyber-attack to guide our reinforcement learning algorithm to effectively identify ways to detect the presence of malicious filenames so that they can be deleted to mitigate a cyber-attack. We show that such a guided system outperforms a base RL system in detecting malware.

2021-04-08
Yang, Z., Sun, Q., Zhang, Y., Zhu, L., Ji, W..  2020.  Inference of Suspicious Co-Visitation and Co-Rating Behaviors and Abnormality Forensics for Recommender Systems. IEEE Transactions on Information Forensics and Security. 15:2766—2781.
The pervasiveness of personalized collaborative recommender systems has shown the powerful capability in a wide range of E-commerce services such as Amazon, TripAdvisor, Yelp, etc. However, fundamental vulnerabilities of collaborative recommender systems leave space for malicious users to affect the recommendation results as the attackers desire. A vast majority of existing detection methods assume certain properties of malicious attacks are given in advance. In reality, improving the detection performance is usually constrained due to the challenging issues: (a) various types of malicious attacks coexist, (b) limited representations of malicious attack behaviors, and (c) practical evidences for exploring and spotting anomalies on real-world data are scarce. In this paper, we investigate a unified detection framework in an eye for an eye manner without being bothered by the details of the attacks. Firstly, co-visitation and co-rating graphs are constructed using association rules. Then, attribute representations of nodes are empirically developed from the perspectives of linkage pattern, structure-based property and inherent association of nodes. Finally, both attribute information and connective coherence of graph are combined in order to infer suspicious nodes. Extensive experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed detection approach compared with competing benchmarks. Additionally, abnormality forensics metrics including distribution of rating intention, time aggregation of suspicious ratings, degree distributions before as well as after removing suspicious nodes and time series analysis of historical ratings, are provided so as to discover interesting findings such as suspicious nodes (items or ratings) on real-world data.
2021-03-29
Zhou, J., Zhang, X., Liu, Y., Lan, X..  2020.  Facial Expression Recognition Using Spatial-Temporal Semantic Graph Network. 2020 IEEE International Conference on Image Processing (ICIP). :1961—1965.

Motions of facial components convey significant information of facial expressions. Although remarkable advancement has been made, the dynamic of facial topology has not been fully exploited. In this paper, a novel facial expression recognition (FER) algorithm called Spatial Temporal Semantic Graph Network (STSGN) is proposed to automatically learn spatial and temporal patterns through end-to-end feature learning from facial topology structure. The proposed algorithm not only has greater discriminative power to capture the dynamic patterns of facial expression and stronger generalization capability to handle different variations but also higher interpretability. Experimental evaluation on two popular datasets, CK+ and Oulu-CASIA, shows that our algorithm achieves more competitive results than other state-of-the-art methods.

Xu, X., Ruan, Z., Yang, L..  2020.  Facial Expression Recognition Based on Graph Neural Network. 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC). :211—214.

Facial expressions are one of the most powerful, natural and immediate means for human being to present their emotions and intensions. In this paper, we present a novel method for fully automatic facial expression recognition. The facial landmarks are detected for characterizing facial expressions. A graph convolutional neural network is proposed for feature extraction and facial expression recognition classification. The experiments were performed on the three facial expression databases. The result shows that the proposed FER method can achieve good recognition accuracy up to 95.85% using the proposed method.

2021-03-17
Soliman, H. M..  2020.  An Optimization Approach to Graph Partitioning for Detecting Persistent Attacks in Enterprise Networks. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—6.
Advanced Persistent Threats (APTs) refer to sophisticated, prolonged and multi-step attacks, planned and executed by skilled adversaries targeting government and enterprise networks. Attack graphs' topologies can be leveraged to detect, explain and visualize the progress of such attacks. However, due to the abundance of false-positives, such graphs are usually overwhelmingly large and difficult for an analyst to understand. Graph partitioning refers to the problem of reducing the graph of alerts to a set of smaller incidents that are easier for an analyst to process and better represent the actual attack plan. Existing approaches are oblivious to the security-context of the problem at hand and result in graphs which, while smaller, make little sense from a security perspective. In this paper, we propose an optimization approach allowing us to generate security-aware partitions, utilizing aspects such as the kill chain progression, number of assets involved, as well as the size of the graph. Using real-world datasets, the results show that our approach produces graphs that are better at capturing the underlying attack compared to state-of-the-art approaches and are easier for the analyst to understand.
2021-03-15
Akter, S., Rahman, M. S., Mansoor, N..  2020.  An Efficient Routing Protocol for Secured Communication in Cognitive Radio Sensor Networks. 2020 IEEE Region 10 Symposium (TENSYMP). :1713–1716.
This paper introduces an efficient reactive routing protocol considering the mobility and the reliability of a node in Cognitive Radio Sensor Networks (CRSNs). The proposed protocol accommodates the dynamic behavior of the spectrum availability and selects a stable transmission path from a source node to the destination. Outlined as a weighted graph problem, the proposed protocol measures the weight for an edge the measuring the mobility patterns of the nodes and channel availability. Furthermore, the mobility pattern of a node is defined in the proposed routing protocol from the viewpoint of distance, speed, direction, and node's reliability. Besides, the spectrum awareness in the proposed protocol is measured over the number of shared common channels and the channel quality. It is anticipated that the proposed protocol shows efficient routing performance by selecting stable and secured paths from source to destination. Simulation is carried out to assess the performance of the protocol where it is witnessed that the proposed routing protocol outperforms existing ones.
2021-02-23
Millar, K., Cheng, A., Chew, H. G., Lim, C..  2020.  Characterising Network-Connected Devices Using Affiliation Graphs. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—6.

Device management in large networks is of growing importance to network administrators and security analysts alike. The composition of devices on a network can help forecast future traffic demand as well as identify devices that may pose a security risk. However, the sheer number and diversity of devices that comprise most modern networks have vastly increased the management complexity. Motivated by a need for an encryption-invariant device management strategy, we use affiliation graphs to develop a methodology that reveals key insights into the devices acting on a network using only the source and destination IP addresses. Through an empirical analysis of the devices on a university campus network, we provide an example methodology to infer a device's characteristics (e.g., operating system) through the services it communicates with via the Internet.

2021-02-22
Chen, T., Lin, T., Hong, Y.- P..  2020.  Gait Phase Segmentation Using Weighted Dynamic Time Warping and K-Nearest Neighbors Graph Embedding. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :1180–1184.
Gait phase segmentation is the process of identifying the start and end of different phases within a gait cycle. It is essential to many medical applications, such as disease diagnosis or rehabilitation. This work utilizes inertial measurement units (IMUs) mounted on the individual's foot to gather gait information and develops a gait phase segmentation method based on the collected signals. The proposed method utilizes a weighted dynamic time warping (DTW) algorithm to measure the distance between two different gait signals, and a k-nearest neighbors (kNN) algorithm to obtain the gait phase estimates. To reduce the complexity of the DTW-based kNN search, we propose a neural network-based graph embedding scheme that is able to map the IMU signals associated with each gait cycle into a distance-preserving low-dimensional representation while also producing a prediction on the k nearest neighbors of the test signal. Experiments are conducted on self-collected IMU gait signals to demonstrate the effectiveness of the proposed scheme.
Bashyam, K. G. Renga, Vadhiyar, S..  2020.  Fast Scalable Approximate Nearest Neighbor Search for High-dimensional Data. 2020 IEEE International Conference on Cluster Computing (CLUSTER). :294–302.
K-Nearest Neighbor (k-NN) search is one of the most commonly used approaches for similarity search. It finds extensive applications in machine learning and data mining. This era of big data warrants efficiently scaling k-NN search algorithms for billion-scale datasets with high dimensionality. In this paper, we propose a solution towards this end where we use vantage point trees for partitioning the dataset across multiple processes and exploit an existing graph-based sequential approximate k-NN search algorithm called HNSW (Hierarchical Navigable Small World) for searching locally within a process. Our hybrid MPI-OpenMP solution employs techniques including exploiting MPI one-sided communication for reducing communication times and partition replication for better load balancing across processes. We demonstrate computation of k-NN for 10,000 queries in the order of seconds using our approach on 8000 cores on a dataset with billion points in an 128-dimensional space. We also show 10X speedup over a completely k-d tree-based solution for the same dataset, thus demonstrating better suitability of our solution for high dimensional datasets. Our solution shows almost linear strong scaling.
Haile, J., Havens, S..  2020.  Identifying Ubiquitious Third-Party Libraries in Compiled Executables Using Annotated and Translated Disassembled Code with Supervised Machine Learning. 2020 IEEE Security and Privacy Workshops (SPW). :157–162.
The size and complexity of the software ecosystem is a major challenge for vendors, asset owners and cybersecurity professionals who need to understand the security posture of these systems. Annotated and Translated Disassembled Code is a graph based datastore designed to organize firmware and software analysis data across builds, packages and systems, providing a highly scalable platform enabling automated binary software analysis tasks including corpora construction and storage for machine learning. This paper describes an approach for the identification of ubiquitous third-party libraries in firmware and software using Annotated and Translated Disassembled Code and supervised machine learning. Annotated and Translated Disassembled Code provide matched libraries, function names and addresses of previously unidentified code in software as it is being automatically analyzed. This data can be ingested by other software analysis tools to improve accuracy and save time. Defenders can add the identified libraries to their vulnerability searches and add effective detection and mitigation into their operating environment.
2021-02-16
Poudel, S., Sun, H., Nikovski, D., Zhang, J..  2020.  Distributed Average Consensus Algorithm for Damage Assessment of Power Distribution System. 2020 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.
In this paper, we propose a novel method to obtain the damage model (connectivity) of a power distribution system (PDS) based on distributed consensus algorithm. The measurement and sensing units in the distribution network are modeled as an agent with limited communication capability that exchanges the information (switch status) to reach an agreement in a consensus algorithm. Besides, a communication graph is designed for agents to run the consensus algorithm which is efficient and robust during the disaster event. Agents can dynamically communicate with the other agent based on available links that are established and solve the distributed consensus algorithm quickly to come up with the correct topology of PDS. Numerical simulations are performed to demonstrate the effectiveness of the proposed approach with the help of an IEEE 123-node test case with 3 different sub-graphs.
Liu, F., Eugenio, E., Jin, I. H., Bowen, C..  2020.  Differentially Private Generation of Social Networks via Exponential Random Graph Models. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1695—1700.
Many social networks contain sensitive relational information. One approach to protect the sensitive relational information while offering flexibility for social network research and analysis is to release synthetic social networks at a pre-specified privacy risk level, given the original observed network. We propose the DP-ERGM procedure that synthesizes networks that satisfy the differential privacy (DP) via the exponential random graph model (EGRM). We apply DP-ERGM to a college student friendship network and compare its original network information preservation in the generated private networks with two other approaches: differentially private DyadWise Randomized Response (DWRR) and Sanitization of the Conditional probability of Edge given Attribute classes (SCEA). The results suggest that DP-EGRM preserves the original information significantly better than DWRR and SCEA in both network statistics and inferences from ERGMs and latent space models. In addition, DP-ERGM satisfies the node DP, a stronger notion of privacy than the edge DP that DWRR and SCEA satisfy.
2021-02-15
Drakopoulos, G., Giotopoulos, K., Giannoukou, I., Sioutas, S..  2020.  Unsupervised Discovery Of Semantically Aware Communities With Tensor Kruskal Decomposition: A Case Study In Twitter. 2020 15th International Workshop on Semantic and Social Media Adaptation and Personalization (SMA. :1–8.
Substantial empirical evidence, including the success of synthetic graph generation models as well as of analytical methodologies, suggests that large, real graphs have a recursive community structure. The latter results, in part at least, in other important properties of these graphs such as low diameter, high clustering coefficient values, heavy degree distribution tail, and clustered graph spectrum. Notice that this structure need not be official or moderated like Facebook groups, but it can also take an ad hoc and unofficial form depending on the functionality of the social network under study as for instance the follow relationship on Twitter or the connections between news aggregators on Reddit. Community discovery is paramount in numerous applications such as political campaigns, digital marketing, crowdfunding, and fact checking. Here a tensor representation for Twitter subgraphs is proposed which takes into consideration both the followfollower relationships but also the coherency in hashtags. Community structure discovery then reduces to the computation of Tucker tensor decomposition, a higher order counterpart of the well-known unsupervised learning method of singular value decomposition (SVD). Tucker decomposition clearly outperforms the SVD in terms of finding a more compact community size distribution in experiments done in Julia on a Twitter subgraph. This can be attributed to the facts that the proposed methodology combines both structural and functional Twitter elements and that hashtags carry an increased semantic weight in comparison to ordinary tweets.
2021-02-08
Moormann, L., Mortel-Fronczak, J. M. van de, Fokkink, W. J., Rooda, J. E..  2020.  Exploiting Symmetry in Dependency Graphs for Model Reduction in Supervisor Synthesis. 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). :659–666.
Supervisor synthesis enables the design of supervisory controllers for large cyber-physical systems, with high guarantees for functionality and safety. The complexity of the synthesis problem, however, increases exponentially with the number of system components in the cyber-physical system and the number of models of this system, often resulting in lengthy or even unsolvable synthesis procedures. In this paper, a new method is proposed for reducing the model of the system before synthesis to decrease the required computational time and effort. The method consists of three steps for model reduction, that are mainly based on symmetry in dependency graphs of the system. Dependency graphs visualize the components in the system and the relations between these components. The proposed method is applied in a case study on the design of a supervisory controller for a road tunnel. In this case study, the model reduction steps are described, and results are shown on the effectiveness of model reduction in terms of model size and synthesis time.
Pelissero, N., Laso, P. M., Puentes, J..  2020.  Naval cyber-physical anomaly propagation analysis based on a quality assessed graph. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–8.
As any other infrastructure relying on cyber-physical systems (CPS), naval CPS are highly interconnected and collect considerable data streams, on which depend multiple command and navigation decisions. Being a data-driven decision system requiring optimized supervisory control on a permanent basis, it is critical to examine the CPS vulnerability to anomalies and their propagation. This paper presents an approach to detect CPS anomalies and estimate their propagation applying a quality assessed graph, which represents the CPS physical and digital subsystems, combined with system variables dependencies and a set of data and information quality measures vectors. Following the identification of variables dependencies and high-risk nodes in the CPS, data and information quality measures reveal how system variables are modified when an anomaly is detected, also indicating its propagation path. Taking as reference the normal state of a naval propulsion management system, four anomalies in the form of cyber-attacks - port scan, programmable logical controller stop, and man in the middle to change the motor speed and operation of a tank valve - were produced. Three anomalies were properly detected and their propagation path identified. These results suggest the feasibility of anomaly detection and estimation of propagation estimation in CPS, applying data and information quality analysis to a system graph.
2021-01-28
Collins, B. C., Brown, P. N..  2020.  Exploiting an Adversary’s Intentions in Graphical Coordination Games. 2020 American Control Conference (ACC). :4638—4643.

How does information regarding an adversary's intentions affect optimal system design? This paper addresses this question in the context of graphical coordination games where an adversary can indirectly influence the behavior of agents by modifying their payoffs. We study a situation in which a system operator must select a graph topology in anticipation of the action of an unknown adversary. The designer can limit her worst-case losses by playing a security strategy, effectively planning for an adversary which intends maximum harm. However, fine-grained information regarding the adversary's intention may help the system operator to fine-tune the defenses and obtain better system performance. In a simple model of adversarial behavior, this paper asks how much a system operator can gain by fine-tuning a defense for known adversarial intent. We find that if the adversary is weak, a security strategy is approximately optimal for any adversary type; however, for moderately-strong adversaries, security strategies are far from optimal.

2021-01-25
Malzahn, D., Birnbaum, Z., Wright-Hamor, C..  2020.  Automated Vulnerability Testing via Executable Attack Graphs. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–10.
Cyber risk assessments are an essential process for analyzing and prioritizing security issues. Unfortunately, many risk assessment methodologies are marred by human subjectivity, resulting in non-repeatable, inconsistent findings. The absence of repeatable and consistent results can lead to suboptimal decision making with respect to cyber risk reduction. There is a pressing need to reduce cyber risk assessment uncertainty by using tools that use well defined inputs, producing well defined results. This paper presents Automated Vulnerability and Risk Analysis (AVRA), an end-to-end process and tool for identifying and exploiting vulnerabilities, designed for use in cyber risk assessments. The approach presented is more comprehensive than traditional vulnerability scans due to its analysis of an entire network, integrating both host and network information. AVRA automatically generates a detailed model of the network and its individual components, which is used to create an attack graph. Then, AVRA follows individual attack paths, automatically launching exploits to reach a particular objective. AVRA was successfully tested within a virtual environment to demonstrate practicality and usability. The presented approach and resulting system enhances the cyber risk assessment process through rigor, repeatability, and objectivity.
Arthy, R., Daniel, E., Maran, T. G., Praveen, M..  2020.  A Hybrid Secure Keyword Search Scheme in Encrypted Graph for Social Media Database. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :1000–1004.

Privacy preservation is a challenging task with the huge amount of data that are available in social media. The data those are stored in the distributed environment or in cloud environment need to ensure confidentiality to data. In addition, representing the voluminous data is graph will be convenient to perform keyword search. The proposed work initially reads the data corresponding to social media and converts that into a graph. In order to prevent the data from the active attacks Advanced Encryption Standard algorithm is used to perform graph encryption. Later, search operation is done using two algorithms: kNK keyword search algorithm and top k nearest keyword search algorithm. The first scheme is used to fetch all the data corresponding to the keyword. The second scheme is used to fetch the nearest neighbor. This scheme increases the efficiency of the search process. Here shortest path algorithm is used to find the minimum distance. Now, based on the minimum value the results are produced. The proposed algorithm shows high performance for graph generation and searching and moderate performance for graph encryption.