Visible to the public Biblio

Found 267 results

Filters: Keyword is graph theory  [Clear All Filters]
2017-03-08
Kaur, R., Singh, S..  2015.  Detecting anomalies in Online Social Networks using graph metrics. 2015 Annual IEEE India Conference (INDICON). :1–6.

Online Social Networks have emerged as an interesting area for analysis where each user having a personalized user profile interact and share information with each other. Apart from analyzing the structural characteristics, detection of abnormal and anomalous activities in social networks has become need of the hour. These anomalous activities represent the rare and mischievous activities that take place in the network. Graphical structure of social networks has encouraged the researchers to use various graph metrics to detect the anomalous activities. One such measure that seemed to be highly beneficial to detect the anomalies was brokerage value which helped to detect the anomalies with high accuracy. Also, further application of the measure to different datasets verified the fact that the anomalous behavior detected by the proposed measure was efficient as compared to the already proposed measures in Oddball Algorithm.

2017-02-27
Li-xiong, Z., Xiao-lin, X., Jia, L., Lu, Z., Xuan-chen, P., Zhi-yuan, M., Li-hong, Z..  2015.  Malicious URL prediction based on community detection. 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC). :1–7.

Traditional Anti-virus technology is primarily based on static analysis and dynamic monitoring. However, both technologies are heavily depended on application files, which increase the risk of being attacked, wasting of time and network bandwidth. In this study, we propose a new graph-based method, through which we can preliminary detect malicious URL without application file. First, the relationship between URLs can be found through the relationship between people and URLs. Then the association rules can be mined with confidence of each frequent URLs. Secondly, the networks of URLs was built through the association rules. When the networks of URLs were finished, we clustered the date with modularity to detect communities and every community represents different types of URLs. We suppose that a URL has association with one community, then the URL is malicious probably. In our experiments, we successfully captured 82 % of malicious samples, getting a higher capture than using traditional methods.

Na, L., Yunwei, D., Tianwei, C., Chao, W., Yang, G..  2015.  The Legitimacy Detection for Multilevel Hybrid Cloud Algorithm Based Data Access. Reliability and Security - Companion 2015 IEEE International Conference on Software Quality. :169–172.

In this paper a joint algorithm was designed to detect a variety of unauthorized access risks in multilevel hybrid cloud. First of all, the access history is recorded among different virtual machines in multilevel hybrid cloud using the global flow diagram. Then, the global flow graph is taken as auxiliary decision-making basis to design legitimacy detection algorithm based data access and is represented by formal representation, Finally the implement process was specified, and the algorithm can effectively detect operating against regulations such as simple unauthorized level across, beyond indirect unauthorized and other irregularities.

Lever, K. E., Kifayat, K., Merabti, M..  2015.  Identifying interdependencies using attack graph generation methods. 2015 11th International Conference on Innovations in Information Technology (IIT). :80–85.

Information and communication technologies have augmented interoperability and rapidly advanced varying industries, with vast complex interconnected networks being formed in areas such as safety-critical systems, which can be further categorised as critical infrastructures. What also must be considered is the paradigm of the Internet of Things which is rapidly gaining prevalence within the field of wireless communications, being incorporated into areas such as e-health and automation for industrial manufacturing. As critical infrastructures and the Internet of Things begin to integrate into much wider networks, their reliance upon communication assets by third parties to ensure collaboration and control of their systems will significantly increase, along with system complexity and the requirement for improved security metrics. We present a critical analysis of the risk assessment methods developed for generating attack graphs. The failings of these existing schemas include the inability to accurately identify the relationships and interdependencies between the risks and the reduction of attack graph size and generation complexity. Many existing methods also fail due to the heavy reliance upon the input, identification of vulnerabilities, and analysis of results by human intervention. Conveying our work, we outline our approach to modelling interdependencies within large heterogeneous collaborative infrastructures, proposing a distributed schema which utilises network modelling and attack graph generation methods, to provide a means for vulnerabilities, exploits and conditions to be represented within a unified model.

Santini, R., Foglietta, C., Panzieri, S..  2015.  A graph-based evidence theory for assessing risk. 2015 18th International Conference on Information Fusion (Fusion). :1467–1474.

The increasing exploitation of the internet leads to new uncertainties, due to interdependencies and links between cyber and physical layers. As an example, the integration between telecommunication and physical processes, that happens when the power grid is managed and controlled, yields to epistemic uncertainty. Managing this uncertainty is possible using specific frameworks, usually coming from fuzzy theory such as Evidence Theory. This approach is attractive due to its flexibility in managing uncertainty by means of simple rule-based systems with data coming from heterogeneous sources. In this paper, Evidence Theory is applied in order to evaluate risk. Therefore, the authors propose a frame of discernment with a specific property among the elements based on a graph representation. This relationship leads to a smaller power set (called Reduced Power Set) that can be used as the classical power set, when the most common combination rules, such as Dempster or Smets, are applied. The paper demonstrates how the use of the Reduced Power Set yields to more efficient algorithms for combining evidences and to application of Evidence Theory for assessing risk.

Orojloo, H., Azgomi, M. A..  2015.  Evaluating the complexity and impacts of attacks on cyber-physical systems. 2015 CSI Symposium on Real-Time and Embedded Systems and Technologies (RTEST). :1–8.

In this paper, a new method for quantitative evaluation of the security of cyber-physical systems (CPSs) is proposed. The proposed method models the different classes of adversarial attacks against CPSs, including cross-domain attacks, i.e., cyber-to-cyber and cyber-to-physical attacks. It also takes the secondary consequences of attacks on CPSs into consideration. The intrusion process of attackers has been modeled using attack graph and the consequence estimation process of the attack has been investigated using process model. The security attributes and the special parameters involved in the security analysis of CPSs, have been identified and considered. The quantitative evaluation has been done using the probability of attacks, time-to-shutdown of the system and security risks. The validation phase of the proposed model is performed as a case study by applying it to a boiling water power plant and estimating the suitable security measures.

Aydin, M., Jacob, J..  2015.  Cloud-COVER: Using User Security Attribute Preferences and Propagation Analysis to Prioritize Threats to Systems. 2015 European Intelligence and Security Informatics Conference. :53–60.

We present Cloud-COVER (Controls and Orderings for Vulnerabilities and ExposuRes), a cloud security threat modelling tool. Cloud-COVER takes input from a user about their deployment, requiring information about the data, instances, connections, their properties, and the importance of various security attributes. This input is used to analyse the relevant threats, and the way they propagate through the system. They are then presented to the user, ordered according to the security attributes they have prioritised, along with the best countermeasures to secure against the dangers listed.

2017-02-14
A. Oprea, Z. Li, T. F. Yen, S. H. Chin, S. Alrwais.  2015.  "Detection of Early-Stage Enterprise Infection by Mining Large-Scale Log Data". 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. :45-56.

Recent years have seen the rise of sophisticated attacks including advanced persistent threats (APT) which pose severe risks to organizations and governments. Additionally, new malware strains appear at a higher rate than ever before. Since many of these malware evade existing security products, traditional defenses deployed by enterprises today often fail at detecting infections at an early stage. We address the problem of detecting early-stage APT infection by proposing a new framework based on belief propagation inspired from graph theory. We demonstrate that our techniques perform well on two large datasets. We achieve high accuracy on two months of DNS logs released by Los Alamos National Lab (LANL), which include APT infection attacks simulated by LANL domain experts. We also apply our algorithms to 38TB of web proxy logs collected at the border of a large enterprise and identify hundreds of malicious domains overlooked by state-of-the-art security products.

2015-05-06
Kanizo, Y., Hay, D., Keslassy, I..  2015.  Maximizing the Throughput of Hash Tables in Network Devices with Combined SRAM/DRAM Memory. Parallel and Distributed Systems, IEEE Transactions on. 26:796-809.

Hash tables form a core component of many algorithms as well as network devices. Because of their large size, they often require a combined memory model, in which some of the elements are stored in a fast memory (for example, cache or on-chip SRAM) while others are stored in much slower memory (namely, the main memory or off-chip DRAM). This makes the implementation of real-life hash tables particularly delicate, as a suboptimal choice of the hashing scheme parameters may result in a higher average query time, and therefore in a lower throughput. In this paper, we focus on multiple-choice hash tables. Given the number of choices, we study the tradeoff between the load of a hash table and its average lookup time. The problem is solved by analyzing an equivalent problem: the expected maximum matching size of a random bipartite graph with a fixed left-side vertex degree. Given two choices, we provide exact results for any finite system, and also deduce asymptotic results as the fast memory size increases. In addition, we further consider other variants of this problem and model the impact of several parameters. Finally, we evaluate the performance of our models on Internet backbone traces, and illustrate the impact of the memories speed difference on the choice of parameters. In particular, we show that the common intuition of entirely avoiding slow memory accesses by using highly efficient schemes (namely, with many fast-memory choices) is not always optimal.
 

Carter, K.M., Idika, N., Streilein, W.W..  2014.  Probabilistic Threat Propagation for Network Security. Information Forensics and Security, IEEE Transactions on. 9:1394-1405.

Techniques for network security analysis have historically focused on the actions of the network hosts. Outside of forensic analysis, little has been done to detect or predict malicious or infected nodes strictly based on their association with other known malicious nodes. This methodology is highly prevalent in the graph analytics world, however, and is referred to as community detection. In this paper, we present a method for detecting malicious and infected nodes on both monitored networks and the external Internet. We leverage prior community detection and graphical modeling work by propagating threat probabilities across network nodes, given an initial set of known malicious nodes. We enhance prior work by employing constraints that remove the adverse effect of cyclic propagation that is a byproduct of current methods. We demonstrate the effectiveness of probabilistic threat propagation on the tasks of detecting botnets and malicious web destinations.

2015-05-05
Vellaithurai, C., Srivastava, A., Zonouz, S., Berthier, R..  2015.  CPIndex: Cyber-Physical Vulnerability Assessment for Power-Grid Infrastructures. Smart Grid, IEEE Transactions on. 6:566-575.

To protect complex power-grid control networks, power operators need efficient security assessment techniques that take into account both cyber side and the power side of the cyber-physical critical infrastructures. In this paper, we present CPINDEX, a security-oriented stochastic risk management technique that calculates cyber-physical security indices to measure the security level of the underlying cyber-physical setting. CPINDEX installs appropriate cyber-side instrumentation probes on individual host systems to dynamically capture and profile low-level system activities such as interprocess communications among operating system assets. CPINDEX uses the generated logs along with the topological information about the power network configuration to build stochastic Bayesian network models of the whole cyber-physical infrastructure and update them dynamically based on the current state of the underlying power system. Finally, CPINDEX implements belief propagation algorithms on the created stochastic models combined with a novel graph-theoretic power system indexing algorithm to calculate the cyber-physical index, i.e., to measure the security-level of the system's current cyber-physical state. The results of our experiments with actual attacks against a real-world power control network shows that CPINDEX, within few seconds, can efficiently compute the numerical indices during the attack that indicate the progressing malicious attack correctly.
 

Manning, F.J., Mitropoulos, F.J..  2014.  Utilizing Attack Graphs to Measure the Efficacy of Security Frameworks across Multiple Applications. System Sciences (HICSS), 2014 47th Hawaii International Conference on. :4915-4920.

One of the primary challenges when developing or implementing a security framework for any particular environment is determining the efficacy of the implementation. Does the implementation address all of the potential vulnerabilities in the environment, or are there still unaddressed issues? Further, if there is a choice between two frameworks, what objective measure can be used to compare the frameworks? To address these questions, we propose utilizing a technique of attack graph analysis to map the attack surface of the environment and identify the most likely avenues of attack. We show that with this technique we can quantify the baseline state of an application and compare that to the attack surface after implementation of a security framework, while simultaneously allowing for comparison between frameworks in the same environment or a single framework across multiple applications.

Hong, J.B., Dong Seong Kim.  2014.  Scalable Security Models for Assessing Effectiveness of Moving Target Defenses. Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference on. :515-526.

Moving Target Defense (MTD) changes the attack surface of a system that confuses intruders to thwart attacks. Various MTD techniques are developed to enhance the security of a networked system, but the effectiveness of these techniques is not well assessed. Security models (e.g., Attack Graphs (AGs)) provide formal methods of assessing security, but modeling the MTD techniques in security models has not been studied. In this paper, we incorporate the MTD techniques in security modeling and analysis using a scalable security model, namely Hierarchical Attack Representation Models (HARMs), to assess the effectiveness of the MTD techniques. In addition, we use importance measures (IMs) for scalable security analysis and deploying the MTD techniques in an effective manner. The performance comparison between the HARM and the AG is given. Also, we compare the performance of using the IMs and the exhaustive search method in simulations.

2015-05-04
Yun Shen, Thonnard, O..  2014.  MR-TRIAGE: Scalable multi-criteria clustering for big data security intelligence applications. Big Data (Big Data), 2014 IEEE International Conference on. :627-635.

Security companies have recently realised that mining massive amounts of security data can help generate actionable intelligence and improve their understanding of Internet attacks. In particular, attack attribution and situational understanding are considered critical aspects to effectively deal with emerging, increasingly sophisticated Internet attacks. This requires highly scalable analysis tools to help analysts classify, correlate and prioritise security events, depending on their likely impact and threat level. However, this security data mining process typically involves a considerable amount of features interacting in a non-obvious way, which makes it inherently complex. To deal with this challenge, we introduce MR-TRIAGE, a set of distributed algorithms built on MapReduce that can perform scalable multi-criteria data clustering on large security data sets and identify complex relationships hidden in massive datasets. The MR-TRIAGE workflow is made of a scalable data summarisation, followed by scalable graph clustering algorithms in which we integrate multi-criteria evaluation techniques. Theoretical computational complexity of the proposed parallel algorithms are discussed and analysed. The experimental results demonstrate that the algorithms can scale well and efficiently process large security datasets on commodity hardware. Our approach can effectively cluster any type of security events (e.g., spam emails, spear-phishing attacks, etc) that are sharing at least some commonalities among a number of predefined features.
 

2015-05-01
Lichtblau, B., Dittrich, A..  2014.  Probabilistic Breadth-First Search - A Method for Evaluation of Network-Wide Broadcast Protocols. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-6.

In Wireless Mesh Networks (WMNs), Network-Wide Broadcasts (NWBs) are a fundamental operation, required by routing and other mechanisms that distribute information to all nodes in the network. However, due to the characteristics of wireless communication, NWBs are generally problematic. Optimizing them thus is a prime target when improving the overall performance and dependability of WMNs. Most existing optimizations neglect the real nature of WMNs and are based on simple graph models, which provide optimistic assumptions of NWB dissemination. On the other hand, models that fully consider the complex propagation characteristics of NWBs quickly become unsolvable due to their complexity. In this paper, we present the Monte Carlo method Probabilistic Breadth-First Search (PBFS) to approximate the reachability of NWB protocols. PBFS simulates individual NWBs on graphs with probabilistic edge weights, which reflect link qualities of individual wireless links in the WMN, and estimates reachability over a configurable number of simulated runs. This approach is not only more efficient than existing ones, but further provides additional information, such as the distribution of path lengths. Furthermore, it is easily extensible to NWB schemes other than flooding. The applicability of PBFS is validated both theoretically and empirically, in the latter by comparing reachability as calculated by PBFS and measured in a real-world WMN. Validation shows that PBFS quickly converges to the theoretically correct value and approximates the behavior of real-life testbeds very well. The feasibility of PBFS to support research on NWB optimizations or higher level protocols that employ NWBs is demonstrated in two use cases.

Mohagheghi, S..  2014.  Integrity Assessment Scheme for Situational Awareness in Utility Automation Systems. Smart Grid, IEEE Transactions on. 5:592-601.

Today's more reliable communication technology, together with the availability of higher computational power, have paved the way for introduction of more advanced automation systems based on distributed intelligence and multi-agent technology. However, abundance of data, while making these systems more powerful, can at the same time act as their biggest vulnerability. In a web of interconnected devices and components functioning within an automation framework, potential impact of malfunction in a single device, either through internal failure or external damage/intrusion, may lead to detrimental side-effects spread across the whole underlying system. The potentially large number of devices, along with their inherent interrelations and interdependencies, may hinder the ability of human operators to interpret events, identify their scope of impact and take remedial actions if necessary. Through utilization of the concepts of graph-theoretic fuzzy cognitive maps (FCM) and expert systems, this paper puts forth a solution that is able to reveal weak links and vulnerabilities of an automation system, should it become exposed to partial internal failure or external damage. A case study has been performed on the IEEE 34-bus test distribution system to show the efficiency of the proposed scheme.

2015-04-30
Fei Hao, Geyong Min, Man Lin, Changqing Luo, Yang, L.T..  2014.  MobiFuzzyTrust: An Efficient Fuzzy Trust Inference Mechanism in Mobile Social Networks. Parallel and Distributed Systems, IEEE Transactions on. 25:2944-2955.

Mobile social networks (MSNs) facilitate connections between mobile users and allow them to find other potential users who have similar interests through mobile devices, communicate with them, and benefit from their information. As MSNs are distributed public virtual social spaces, the available information may not be trustworthy to all. Therefore, mobile users are often at risk since they may not have any prior knowledge about others who are socially connected. To address this problem, trust inference plays a critical role for establishing social links between mobile users in MSNs. Taking into account the nonsemantical representation of trust between users of the existing trust models in social networks, this paper proposes a new fuzzy inference mechanism, namely MobiFuzzyTrust, for inferring trust semantically from one mobile user to another that may not be directly connected in the trust graph of MSNs. First, a mobile context including an intersection of prestige of users, location, time, and social context is constructed. Second, a mobile context aware trust model is devised to evaluate the trust value between two mobile users efficiently. Finally, the fuzzy linguistic technique is used to express the trust between two mobile users and enhance the human's understanding of trust. Real-world mobile dataset is adopted to evaluate the performance of the MobiFuzzyTrust inference mechanism. The experimental results demonstrate that MobiFuzzyTrust can efficiently infer trust with a high precision.