Visible to the public Biblio

Filters: Keyword is friendly jamming  [Clear All Filters]
2023-02-17
Chen, Yichao, Liu, Guanbang, Zhang, Zhen, He, Lidong.  2022.  Secure Remote Control for Multi-UAV Systems: a Physical Layer Security Perspective. 2022 IEEE International Conference on Unmanned Systems (ICUS). :916–921.
Using multi-UAV systems to accomplish both civil and military missions is becoming a popular trend. With the development of software and hardware technologies, Unmanned aerial vehicles (UAVs) are now able to operate autonomously at edge. However, the remote control of manned systems, e.g., ground control station (GCS), remains essential to mission success, and the system's control and non-payload communication (CNPC) are facing severe cyber threats caused by smart attacks. To avoid hijacking, in this paper, we propose a secure mechanism that reduces such security risks for multi-UAV systems. We introduce friendly jamming from UAVs to block eavesdropping on the remote control channel. The trade-off between security and energy consumption is optimized by three approaches designed for UAV and GCS under algorithms of different complexities. Numerical results show the approach efficiency under different mission conditions and security demands, and demonstrate the features of the proposed mechanism for various scenarios.
ISSN: 2771-7372
2018-02-02
Adams, M., Bhargava, V. K..  2017.  Using friendly jamming to improve route security and quality in ad hoc networks. 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE). :1–6.

Friendly jamming is a physical layer security technique that utilizes extra available nodes to jam any eavesdroppers. This paper considers the use of additional available nodes as friendly jammers in order to improve the security performance of a route through a wireless area network. One of the unresolved technical challenges is the combining of security metrics with typical service quality metrics. In this context, this paper considers the problem of routing through a D2D network while jointly minimizing the secrecy outage probability (SOP) and connection outage probability (COP), using friendly jamming to improve the SOP of each link. The jamming powers are determined to place nulls at friendly receivers while maximizing the power to eavesdroppers. Then the route metrics are derived, and the problem is framed as a convex optimization problem. We also consider that not all network users equally value SOP and COP, and so introduce an auxiliary variable to tune the optimization between the two metrics.