Visible to the public Biblio

Filters: Keyword is microcomputers  [Clear All Filters]
2023-02-17
Abduljabbar, Mohammed, Alnajjar, Fady.  2022.  Web Platform for General Robot Controlling system. 2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA). :109–112.
AbuSaif is a human-like social robot designed and built at the UAE University's Artificial Intelligence and Robotics Lab. AbuSaif was initially operated by a classical personal computer (PC), like most of the existing social robots. Thus, most of the robot's functionalities are limited to the capacity of that mounted PC. To overcome this, in this study, we propose a web-based platform that shall take the benefits of clustering in cloud computing. Our proposed platform will increase the operational capability and functionality of AbuSaif, especially those needed to operate artificial intelligence algorithms. We believe that the robot will become more intelligent and autonomous using our proposed web platform.
2022-08-12
de Vito, Luca, Picariello, Francesco, Rapuano, Sergio, Tudosa, Ioan.  2021.  Compressive Sampling on RFSoC for Distributed Wideband RF Spectrum Measurements. 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). :1—6.
This paper presents the application of Compressive Sampling (CS) to the realization of a wideband receiver for distributed spectrum monitoring. The proposed prototype performs the non-uniform sampling CS-based technique, while the signal reconstruction is realized by the Orthogonal Matching Pursuit (OMP) algorithm on a personal computer. A first experimental analysis has been conducted on the prototype by assessing several figures of merit, thus characterizing its performance in the time, frequency and modulation domains. The obtained results demonstrate that the proposed prototype can achieve good performance in all specified domains with Compression Ratios (CRs) up to 10 for a 4-QAM (Quadrature Amplitude Modulation) signal having carrier frequency of 350 MHz and working at a symbol rate of 46 MSym/s.
2021-03-29
Bogdan-Iulian, C., Vasilică-Gabriel, S., Alexandru, M. D., Nicolae, G., Andrei, V..  2020.  Improved Secure Internet of Things System using Web Services and Low Power Single-board Computers. 2020 International Conference on e-Health and Bioengineering (EHB). :1—5.

Internet of Things (IoT) systems are becoming widely used, which makes them to be a high-value target for both hackers and crackers. From gaining access to sensitive information to using them as bots for complex attacks, the variety of advantages after exploiting different security vulnerabilities makes the security of IoT devices to be one of the most challenging desideratum for cyber security experts. In this paper, we will propose a new IoT system, designed to ensure five data principles: confidentiality, integrity, availability, authentication and authorization. The innovative aspects are both the usage of a web-based communication and a custom dynamic data request structure.

2021-03-15
Silitonga, A., Gassoumi, H., Becker, J..  2020.  MiteS: Software-based Microarchitectural Attacks and Countermeasures in networked AP SoC Platforms. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :65—71.

The impact of microarchitectural attacks in Personal Computers (PCs) can be further adapted to and observed in internetworked All Programmable System-on-Chip (AP SoC) platforms. This effort involves the access control or execution of Intellectual Property cores in the FPGA of an AP SoC Victim internetworked with an AP SoC Attacker via Internet Protocol (IP). Three conceptions of attacks were implemented: buffer overflow attack at the stack, return-oriented programming attack, and command-injection-based attack for dynamic reconfiguration in the FPGA. Indeed, a specific preventive countermeasure for each attack is proposed. The functionality of the countermeasures mainly comprises adapted words addition (stack protection) for the first and second attacks and multiple encryption for the third attack. In conclusion, the recommended countermeasures are realizable to counteract the implemented attacks.

2021-03-04
Kostromitin, K. I., Dokuchaev, B. N., Kozlov, D. A..  2020.  Analysis of the Most Common Software and Hardware Vulnerabilities in Microprocessor Systems. 2020 International Russian Automation Conference (RusAutoCon). :1031—1036.

The relevance of data protection is related to the intensive informatization of various aspects of society and the need to prevent unauthorized access to them. World spending on ensuring information security (IS) for the current state: expenses in the field of IS today amount to \$81.7 billion. Expenditure forecast by 2020: about \$105 billion [1]. Information protection of military facilities is the most critical in the public sector, in the non-state - financial organizations is one of the leaders in spending on information protection. An example of the importance of IS research is the Trojan encoder WannaCry, which infected hundreds of thousands of computers around the world, attacks are recorded in more than 116 countries. The attack of the encoder of WannaCry (Wana Decryptor) happens through a vulnerability in service Server Message Block (protocol of network access to file systems) of Windows OS. Then, a rootkit (a set of malware) was installed on the infected system, using which the attackers launched an encryption program. Then each vulnerable computer could become infected with another infected device within one local network. Due to these attacks, about \$70,000 was lost (according to data from 18.05.2017) [2]. It is assumed in the presented work, that the software level of information protection is fundamentally insufficient to ensure the stable functioning of critical objects. This is due to the possible hardware implementation of undocumented instructions, discussed later. The complexity of computing systems and the degree of integration of their components are constantly growing. Therefore, monitoring the operation of the computer hardware is necessary to achieve the maximum degree of protection, in particular, data processing methods.

Ramadhanty, A. D., Budiono, A., Almaarif, A..  2020.  Implementation and Analysis of Keyboard Injection Attack using USB Devices in Windows Operating System. 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE). :449—454.

Windows is one of the popular operating systems in use today, while Universal Serial Bus (USB) is one of the mechanisms used by many people with practical plug and play functions. USB has long been used as a vector of attacks on computers. One method of attack is Keylogger. The Keylogger can take advantage of existing vulnerabilities in the Windows 10 operating system attacks carried out in the form of recording computer keystroke activity without the victim knowing. In this research, an attack will be carried out by running a Powershell Script using BadUSB to be able to activate the Keylogger program. The script is embedded in the Arduino Pro Micro device. The results obtained in the Keyboard Injection Attack research using Arduino Pro Micro were successfully carried out with an average time needed to run the keylogger is 7.474 seconds with a computer connected to the internet. The results of the keylogger will be sent to the attacker via email.

2018-02-02
Paul-Pena, D., Krishnamurthy, P., Karri, R., Khorrami, F..  2017.  Process-aware side channel monitoring for embedded control system security. 2017 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). :1–6.

Cyber-physical systems (CPS) are interconnections of heterogeneous hardware and software components (e.g., sensors, actuators, physical systems/processes, computational nodes and controllers, and communication subsystems). Increasing network connectivity of CPS computational nodes facilitates maintenance and on-demand reprogrammability and reduces operator workload. However, such increasing connectivity also raises the potential for cyber-attacks that attempt unauthorized modifications of run-time parameters or control logic in the computational nodes to hamper process stability or performance. In this paper, we analyze the effectiveness of real-time monitoring using digital and analog side channels. While analog side channels might not typically provide sufficient granularity to observe each iteration of a periodic loop in the code in the CPS device, the temporal averaging inherent to side channel sensory modalities enables observation of persistent changes to the contents of a computational loop through their resulting effect on the level of activity of the device. Changes to code can be detected by observing readings from side channel sensors over a period of time. Experimental studies are performed on an ARM-based single board computer.