Visible to the public Biblio

Found 103 results

Filters: Keyword is Fuzzy logic  [Clear All Filters]
2015-05-05
Hang Shao, Japkowicz, N., Abielmona, R., Falcon, R..  2014.  Vessel track correlation and association using fuzzy logic and Echo State Networks. Evolutionary Computation (CEC), 2014 IEEE Congress on. :2322-2329.

Tracking moving objects is a task of the utmost importance to the defence community. As this task requires high accuracy, rather than employing a single detector, it has become common to use multiple ones. In such cases, the tracks produced by these detectors need to be correlated (if they belong to the same sensing modality) or associated (if they were produced by different sensing modalities). In this work, we introduce Computational-Intelligence-based methods for correlating and associating various contacts and tracks pertaining to maritime vessels in an area of interest. Fuzzy k-Nearest Neighbours will be used to conduct track correlation and Fuzzy C-Means clustering will be applied for association. In that way, the uncertainty of the track correlation and association is handled through fuzzy logic. To better model the state of the moving target, the traditional Kalman Filter will be extended using an Echo State Network. Experimental results on five different types of sensing systems will be discussed to justify the choices made in the development of our approach. In particular, we will demonstrate the judiciousness of using Fuzzy k-Nearest Neighbours and Fuzzy C-Means on our tracking system and show how the extension of the traditional Kalman Filter by a recurrent neural network is superior to its extension by other methods.

Shahgoshtasbi, D., Jamshidi, M.M..  2014.  A New Intelligent Neuro #x2013;Fuzzy Paradigm for Energy-Efficient Homes. Systems Journal, IEEE. 8:664-673.

Demand response (DR), which is the action voluntarily taken by a consumer to adjust amount or timing of its energy consumption, has an important role in improving energy efficiency. With DR, we can shift electrical load from peak demand time to other periods based on changes in price signal. At residential level, automated energy management systems (EMS) have been developed to assist users in responding to price changes in dynamic pricing systems. In this paper, a new intelligent EMS (iEMS) in a smart house is presented. It consists of two parts: a fuzzy subsystem and an intelligent lookup table. The fuzzy subsystem is based on its fuzzy rules and inputs that produce the proper output for the intelligent lookup table. The second part, whose core is a new model of an associative neural network, is able to map inputs to desired outputs. The structure of the associative neural network is presented and discussed. The intelligent lookup table takes three types of inputs that come from the fuzzy subsystem, outside sensors, and feedback outputs. Whatever is trained in this lookup table are different scenarios in different conditions. This system is able to find the best energy-efficiency scenario in different situations.

2015-04-30
Dondio, P., Longo, L..  2014.  Computing Trust as a Form of Presumptive Reasoning. Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2014 IEEE/WIC/ACM International Joint Conferences on. 2:274-281.

This study describes and evaluates a novel trust model for a range of collaborative applications. The model assumes that humans routinely choose to trust their peers by relying on few recurrent presumptions, which are domain independent and which form a recognisable trust expertise. We refer to these presumptions as trust schemes, a specialised version of Walton's argumentation schemes. Evidence is provided about the efficacy of trust schemes using a detailed experiment on an online community of 80,000 members. Results show how proposed trust schemes are more effective in trust computation when they are combined together and when their plausibility in the selected context is considered.