Biblio
Mobile phones have become nowadays a commodity to the majority of people. Using them, people are able to access the world of Internet and connect with their friends, their colleagues at work or even unknown people with common interests. This proliferation of the mobile devices has also been seen as an opportunity for the cyber criminals to deceive smartphone users and steel their money directly or indirectly, respectively, by accessing their bank accounts through the smartphones or by blackmailing them or selling their private data such as photos, credit card data, etc. to third parties. This is usually achieved by installing malware to smartphones masking their malevolent payload as a legitimate application and advertise it to the users with the hope that mobile users will install it in their devices. Thus, any existing application can easily be modified by integrating a malware and then presented it as a legitimate one. In response to this, scientists have proposed a number of malware detection and classification methods using a variety of techniques. Even though, several of them achieve relatively high precision in malware classification, there is still space for improvement. In this paper, we propose a text mining all repeated pattern detection method which uses the decompiled files of an application in order to classify a suspicious application into one of the known malware families. Based on the experimental results using a real malware dataset, the methodology tries to correctly classify (without any misclassification) all randomly selected malware applications of 3 categories with 3 different families each.
The Dark Web, a conglomerate of services hidden from search engines and regular users, is used by cyber criminals to offer all kinds of illegal services and goods. Multiple Dark Web offerings are highly relevant for the cyber security domain in anticipating and preventing attacks, such as information about zero-day exploits, stolen datasets with login information, or botnets available for hire. In this work, we analyze and discuss the challenges related to information gathering in the Dark Web for cyber security intelligence purposes. To facilitate information collection and the analysis of large amounts of unstructured data, we present BlackWidow, a highly automated modular system that monitors Dark Web services and fuses the collected data in a single analytics framework. BlackWidow relies on a Docker-based micro service architecture which permits the combination of both preexisting and customized machine learning tools. BlackWidow represents all extracted data and the corresponding relationships extracted from posts in a large knowledge graph, which is made available to its security analyst users for search and interactive visual exploration. Using BlackWidow, we conduct a study of seven popular services on the Deep and Dark Web across three different languages with almost 100,000 users. Within less than two days of monitoring time, BlackWidow managed to collect years of relevant information in the areas of cyber security and fraud monitoring. We show that BlackWidow can infer relationships between authors and forums and detect trends for cybersecurity-related topics. Finally, we discuss exemplary case studies surrounding leaked data and preparation for malicious activity.
Cybercrimes and cyber criminals widely use dark web and illegal functionalities of the dark web towards the world crisis. More than half of the criminal activities and the terror activities conducted through the dark web such as, cryptocurrency, selling human organs, red rooms, child pornography, arm deals, drug deals, hire assassins and hackers, hacking software and malware programs, etc. The law enforcement agencies such as FBI, NSA, Interpol, Mossad, FSB etc, are always conducting surveillance programs through the dark web to trace down the mass criminals and terrorists while stopping the crimes and the terror activities. This paper is about the dark web marketing and surveillance programs. In the deep end research will discuss the dark web access with securely and how the law enforcement agencies exponentially tracking down the users with terror behaviours and activities. Moreover, the paper discusses dark web sites which users can grab the dark web jihadist services and anonymous markets including safety precautions.
Cyber criminals have been extensively using malicious Ransomware software for years. Ransomware is a subset of malware in which the data on a victim's computer is locked, typically by encryption, and payment is demanded before the ransomed data is decrypted and access returned to the victim. The motives for such attacks are not only limited to economical scumming. Illegal attacks on official databases may also target people with political or social power. Although billions of dollars have been spent for preventing or at least reducing the tremendous amount of losses, these malicious Ransomware attacks have been expanding and growing. Therefore, it is critical to perform technical analysis of such malicious codes and, if possible, determine the source of such attacks. It might be almost impossible to recover the affected files due to the strong encryption imposed on such files, however the determination of the source of Ransomware attacks have been becoming significantly important for criminal justice. Unfortunately, there are only a few technical analysis of real life attacks in the literature. In this work, a real life Ransomware attack on an official institute is investigated and fully analyzed. The analysis have been performed by both static and dynamic methods. The results show that the source of the Ransomware attack has been shown to be traceable from the server's whois information.
The power grid is a prime target of cyber criminals and warrants special attention as it forms the backbone of major infrastructures that drive the nation's defense and economy. Developing security measures for the power grid is challenging since it is physically dispersed and interacts dynamically with associated cyber infrastructures that control its operation. This paper presents a mathematical framework to investigate stability of two area systems due to data attacks on Automatic Generation Control (AGC) system. Analytical and simulation results are presented to identify attack levels that could drive the AGC system to potentially become unstable.
The deployment of Voice over Internet Protocol (VoIP) in place of traditional communication facilities has helped in huge reduction in operating costs, as well as enabled adoption of next generation communication services-based IP. At the same time, cyber criminals have also started intercepting environment and creating challenges for law enforcement system in any Country. At this instant, we propose a framework for the forensic analysis of the VoIP traffic over the network. This includes identifying and analyzing of network patterns of VoIP- SIP which is used for the setting up a session for the communication, and VoIP-RTP which is used for sending the data. Our network forensic investigation framework also focus on developing an efficient packet reordering and reconstruction algorithm for tracing the malicious users involved in conversation. The proposed framework is based on network forensics which can be used for content level observation of VoIP and regenerate original malicious content or session between malicious users for their prosecution in the court.
Massive online social networks with hundreds of millions of active users are increasingly being used by Cyber criminals to spread malicious software (malware) to exploit vulnerabilities on the machines of users for personal gain. Twitter is particularly susceptible to such activity as, with its 140 character limit, it is common for people to include URLs in their tweets to link to more detailed information, evidence, news reports and so on. URLs are often shortened so the endpoint is not obvious before a person clicks the link. Cyber criminals can exploit this to propagate malicious URLs on Twitter, for which the endpoint is a malicious server that performs unwanted actions on the person's machine. This is known as a drive-by-download. In this paper we develop a machine classification system to distinguish between malicious and benign URLs within seconds of the URL being clicked (i.e. `real-time'). We train the classifier using machine activity logs created while interacting with URLs extracted from Twitter data collected during a large global event - the Superbowl - and test it using data from another large sporting event - the Cricket World Cup. The results show that machine activity logs produce precision performances of up to 0.975 on training data from the first event and 0.747 on a test data from a second event. Furthermore, we examine the properties of the learned model to explain the relationship between machine activity and malicious software behaviour, and build a learning curve for the classifier to illustrate that very small samples of training data can be used with only a small detriment to performance.
Certain crimes are difficult to be committed by individuals but carefully organised by group of associates and affiliates loosely connected to each other with a single or small group of individuals coordinating the overall actions. A common starting point in understanding the structural organisation of criminal groups is to identify the criminals and their associates. Situations arise in many criminal datasets where there is no direct connection among the criminals. In this paper, we investigate ties and community structure in crime data in order to understand the operations of both traditional and cyber criminals, as well as to predict the existence of organised criminal networks. Our contributions are twofold: we propose a bipartite network model for inferring hidden ties between actors who initiated an illegal interaction and objects affected by the interaction, we then validate the method in two case studies on pharmaceutical crime and underground forum data using standard network algorithms for structural and community analysis. The vertex level metrics and community analysis results obtained indicate the significance of our work in understanding the operations and structure of organised criminal networks which were not immediately obvious in the data. Identifying these groups and mapping their relationship to one another is essential in making more effective disruption strategies in the future.
Phishing continues to remain a lucrative market for cyber criminals, mostly because of the vulnerable human element. Through emails and spoofed-websites, phishers exploit almost any opportunity using major events, considerable financial awards, fake warnings and the trusted reputation of established organizations, as a basis to gain their victims' trust. For many years, humans have often been referred to as the `weakest link' towards protecting information. To gain their victims' trust, phishers continue to use sophisticated looking emails and spoofed websites to trick them, and rely on their victims' lack of knowledge, lax security behavior and organizations' inadequate security measures towards protecting itself and their clients. As such, phishing security controls and vulnerabilities can arguably be classified into three main elements namely human factors (H), organizational aspects (O) and technological controls (T). All three of these elements have the common feature of human involvement and as such, security gaps are inevitable. Each element also functions as both security control and security vulnerability. A holistic framework towards combatting phishing is required whereby the human feature in all three of these elements is enhanced by means of a security education, training and awareness programme. This paper discusses the educational factors required to form part of a holistic framework, addressing the HOT elements as well as the relationships between these elements towards combatting phishing. The development of this framework uses the principles of design science to ensure that it is developed with rigor. Furthermore, this paper reports on the verification of the framework.